A linear equation will always be in the form

$$
\begin{aligned}
& a x+b y=c \\
& \text { OR } \\
& a x+b y+c=0
\end{aligned}
$$ $c$ is the constant. $a, b, c \in Q$

or
$y=m x+c \quad \log$ Tables $\operatorname{Pg} 18$

$$
\begin{aligned}
& m=\text { slope. } \\
& c=(0, C) \text { y intercept }
\end{aligned}
$$

1) To find the equation of a line when gwen the slope and a pout.
Log table page 18
Formula: $y-y_{1}=m\left(x-x_{1}\right) \quad$ N $T$ TE: $m=$ slope point $\left(x_{1}, y_{1}\right)$
Eg1) Find the equation of the uni which has a slope $\underset{2}{ }$ and passes through the point $\binom{x_{1} y^{\prime}}{3, y^{\prime}}$
$\left.\begin{array}{l}m=2 \\ \text { posit }\binom{x, 4,4}{3,4}\end{array}\right\} \begin{gathered}\text { subinto } \\ \text { formula }\end{gathered}$

$$
\left.\begin{array}{ll}
l & y-4=2(x-3) \\
\text { ila } & y-4=2 x-6 \text { triply } \\
-y & -4=2 x-y-6 \\
+4 & 0=2 x-y-2
\end{array} \right\rvert\,+4.4 \text { up }
$$

$$
\begin{gathered}
2 x-y-2=0 \\
H / W \operatorname{Pg} 214 Q 1(11) \text { and (iii) }
\end{gathered}
$$

T\&T2 11.3
The...

Te
T\&T2 11.3
The...


Coordinate Geometry The Line

Section 11.3 The equation of a line

## Example 1

Find the equation of the line containing the point $(-3,2)$ and whose slope is $\frac{2}{3}$.

## Example 2

Find the equation of the line containing the points $(-2,3)$ and $(3,1)$.

## Exercise 11.3

1. Find the equations of the following lines, given the slope and a point on the line in each case:
(i) slope $=2$; point $=(3,4)$
(ii) slope $=4$; point $=(1,5)$

$$
m
$$

$y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{gathered}
y-5=4(x-1) \\
y-x^{t}=4 x-4 \\
-y\left|\begin{array}{l}
y \\
-y \\
0
\end{array}\right| \begin{array}{l}
4 x+1 \\
0 \\
0
\end{array}\left|\begin{array}{l}
+5 \\
a x+b y+c
\end{array}\right|-y
\end{gathered}
$$

1. Find the equations of the following lines, given the slope and a point on the line in each case:
(iii) slope $=5$; point $=\begin{gathered}x_{1}, y_{1} \\ (-2,3)\end{gathered}$
(iv) slope $=m_{-3 ;}$ point $=\begin{array}{cc}x_{1}, y_{1} \\ -2,0)\end{array}$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-3=5(x-(-2))$
$5(x+2)$

$$
\begin{gathered}
y-0=-3(x-(-2)) \\
y-0=-3(x+2) \\
y-0=-3 x-6 \\
\left.+3 x \left\lvert\, \begin{array}{l|l|} 
& 3 x+y \\
+6 & 3 x+y+6
\end{array}\right.\right)=0 \mid+6
\end{gathered}
$$

$y-3=5 x+10$

| $-y$ | $-3=5 x-y+10$ | $-y$ |
| :--- | :--- | :--- |
| +3 | $0=5 x-y+13$ | +3 |

$5 x-y+13=0$

1. Find the equations of the following lines, given the slope and a point on the line in each case:

$$
\begin{aligned}
& \text { (v) slope }=-5 \text {;point }=(-3,-2) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-(-2)=-5(x-(-3)) \\
& y+2=-5(x+3) \\
& y+2=-5 x-15 \\
& +5 x\left|\begin{array}{l}
5 x+y+2=-18 \\
5 x+5 \times \\
5 x+y+7=0 \\
a x+b y+c=0
\end{array}\right|+15
\end{aligned}
$$

$$
\begin{aligned}
& \text { (vi) slope }=\frac{m}{3} \text {; point }=\left(\begin{array}{c}
x \\
x \\
(3) \\
1
\end{array}\right) \text {. } \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-(-1)=\frac{2}{3}(x-3) \\
& 3(y+1)=\frac{2}{2}(x-3) \\
& 3 y+3=2 x-6 \\
& \begin{array}{l|l|l|}
-3 y & +3=2 x-3 y-6 & -3 y \\
0=2 x-3 y-9 & -3
\end{array}
\end{aligned}
$$

with a fractimial slope

$$
\frac{y-y_{1}}{}=\frac{\square}{\square}\left(x-x_{1}\right)^{\text {multiply }}
$$

multiply the denominator to the 'y parts multiply the numerator to the $x$ parts.
2. Find the equations of the following lines, given the slope and a point on the line in each case:
(i) slope $=\frac{3}{4}$; point $=(1,-4)$
m

$$
\begin{aligned}
& y-(-4)=\frac{3}{4}(x-1) \\
& y+4=\frac{3}{4}(x-1)
\end{aligned}
$$

$4 y+16=3 x-3$

$$
\begin{array}{l|l|l}
-4 y & 16=3 x-4 y-3 & -4 y \\
-1 / 6 & 0=3 x-14-19 & -16
\end{array}
$$

(ii) slope $=\frac{3}{5}$; point $=(-4,2)$.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=\frac{3}{5}(x-(-4) \\
& y-2=\frac{3}{5}(x+4) \\
& 5 y-10=3 x+12 \\
&-569 \mid-10=3 x-5 y+\left.12\right|^{-5 y} \\
& 0=3 x-5 y+22 \\
& 3 x-5 y+22
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

3. Find the equation of the line through $\left(\begin{array}{cc}x, y \\ -2,3)\end{array}\right.$ with slope
(i) 4

$$
\text { (ii) }-2
$$

$$
\text { (iii) } \frac{3}{4} \mathrm{M}
$$

(iv) $-\frac{2}{3} m$

$$
\begin{gathered}
y-3=\frac{-2}{3}(x+2) \\
3 y-9=-2 x-4 \\
+4 \left\lvert\, \begin{array}{l|l}
3 y-5=-2 x & +4 \\
+2 x & 2 x+3 y-5=0
\end{array}+2 x\right.
\end{gathered}
$$

$$
\begin{aligned}
& y-3=4(x+2) \\
& y-3=-2(x+2) \quad y-3=\frac{3}{4}(x+2) \\
& y-3=-2 x-4 \\
& y-3=4 x+8 \\
& \begin{array}{l|l|l}
\text {-y } & -x=4 x-y+8 \mid-y \\
\text { is } & 0=4 x-y+11
\end{array} \\
& \begin{array}{l}
y-3=\frac{3}{4}(x+2) \\
4 y-y=3 x+6
\end{array}
\end{aligned}
$$

3. Find the equation of the line through $\left(\begin{array}{c}x, y \prime \\ -2,3)\end{array}\right.$ with slope
(i) 4
(ii) -2
$\begin{array}{cll}\begin{array}{c}\text { (i) } 4\end{array} & \text { (ii) }-2 & \text { (iii) } \frac{3}{4} m \\ y-3=4(x+2) & y-3=-2(x+2) & y-3=\frac{3}{4}(x+2)\end{array}$
(iv) $-\frac{2}{3} m$
$y-3=\frac{-2}{3}(x+2)$
$y-3=4 x+8$


$$
\begin{array}{c|c|c}
3 y-9=-2 x-14 \\
+4 & 3 y-5=-2 x & +4 \\
+2 x & 2 x+3 y-5=0 & +2 x
\end{array}
$$

4. Find the equation of the line through $(0,0)$ and whose slope is -3 .
5. Find the equation of the line through $(0,0)$ and whose slope is
(i) 3
(ii) -5
(iii) $\frac{1}{3}$
(iv) $-\frac{3}{2}$

What do you notice about the equation of each of these lines?

To fid the equation of a line when given Two Pociris.

$$
x_{1} \quad y_{1} \quad x=y_{2}
$$

step.
Find the stope of the line through $A(3,-4)$ and $B(1,2)$,
Hence find the equation of the line $A B$. into the formula.
Slope $m=\frac{x_{2}-x_{1}}{x_{2}}$

$$
m=\frac{2-(-4)}{1-3}=\frac{6}{-2}=\begin{gathered}
m \\
-3 \\
\text { slope }
\end{gathered}
$$

## c lo

pg 214
(2) Equaticin of the line

$$
\begin{aligned}
& \text { quation of the lune } \\
& y-y^{\prime}=m\left(x-x_{1}\right)
\end{aligned} \quad y-(-4)=-3(x-3)
$$

7. Find the equations of the lines through the following pairs of points:

$$
\begin{aligned}
& y+4=-3 x+9 \\
& \begin{array}{l|l|l}
-9 & y-5=-3 x & -9 \\
+3 x & 3 x+y-5=0 & +3 x
\end{array}
\end{aligned}
$$

7. Find the equations of the lines through the following pairs of points:
$\boldsymbol{H}_{(\mathrm{i})}^{\mathbf{W}_{(2,3)}}$ and (4, 6)
$\boldsymbol{H}_{\text {(ii) }}(-1,2)$ and $(2,-4)$
8. Find the equations of the lines through the following pairs of points:
$\boldsymbol{\|} \boldsymbol{\omega}_{\text {(iii) }}(-5,1)$ and (1,0)
(iv) $(-2,3)$ and $(3,-1)$
9. Find the equations of the lines through the following pairs of points:
(v) $(2,7)$ and $(0,5)$
(vi) $(-3,-5)$ and ( $-1,-1$ ).
10. Find the equation of the line through $(-2,3)$ and the midpoint of the line segment joining $(1,-3)$ and $(3,-1)$.
11. Using any two points on each line, find the slopes of the lines shown below. Hence find the equation of each line.
(i)

12. Using any two points on each line, find the slopes of the lines shown below. Hence find the equation of each line.
(ii)

13. Use two different ways to find the slope of the given line $A B$.
Hence find the equation of the line.


## Answers

## Exercise 11.3

1. (i) $2 x-y-2=0$
(ii) $4 x-y+1=0$
(iii) $5 x-y+13=0$
(iv) $3 x+y+6=0$
(v) $5 x+y+17=0$
(vi) $2 x-3 y-9=0$
2. (i) $3 x-4 y-19=0$ (ii) $3 x-5 y+22=0$
3. (i) $4 x-y+11=0$
(ii) $2 x+y+1=0$
(iii) $3 x-4 y+18=0$
(iv) $2 x+3 y-5=0$
4. $3 x+y=0$
5. (i) $3 x-y=0$
(ii) $5 x+y=0$
(iii) $x-3 y=0$
(iv) $3 x+2 y=0$; no constant number
6. $-3 ; 3 x+y-5=0$
7. (i) $3 x-2 y=0$
(ii) $2 x+y=0$
(iii) $x+6 y-1=0$
(iv) $4 x+5 y-7=0$
(v) $x-y+5=0$
(vi) $2 x-y+1=0$
8. $5 x+4 y-2=0$
9. (i) $3,3 x-y-6=0$
(ii) $\frac{1}{3}, x-3 y+6=0$
10. $x-2 y+4=0$
