Used to fund the approximate area of an irregular shape

Pg 12
Log tables

Note $y=$ height $h=$ width
$\underset{\text { Formula in }}{\text { wards }}=\frac{\text { width }}{2}[$ Frist height + last height $+2($ sum of all other $)]$
Eg1) Use the trapezoidal rule to fund the area of the shape

$$
\text { Area }=\frac{5^{n}}{2}\left[10+0^{y 1}+2(17+18+12+13+21+23+8+6)\right]
$$

Calculator
Area $=615 \mathrm{~cm}^{2}$
H 1 W Pg 268 QI
Trap Rule
When the navizontal axis is passing through the shape.
(1) Work out the area of the top shape and bottom shape separately then add the answers together
(2) Add the vertical heights to get the total heights then sub in to trap rule.

$$
\begin{aligned}
& h=\text { width } \\
& y=\text { height }
\end{aligned}
$$

$$
\text { Area }=\frac{4}{2}(0+0+2(13+14+18+16+11))
$$

calculator
Area $=288 \mathrm{~m}^{2}$

Q1) The sketch shows a lake bounded on one side by a straight dam

1) Use the trap rule to estimate the area of the lake

$$
A=18 / 2[10+0+2(25+30+38+36+22)]=2808 \mathrm{~m}^{2}
$$

2) If the lake contains $15,00 \mathrm{am}^{3}$ of water calculate the average dept of the water on the lake to the nearest m.

$$
\begin{array}{rlrl}
\text { Volume }= & \text { Area } \times \text { Dept } & \\
\begin{array}{rl}
15,000 \mathrm{~m}^{3}=(2808) D & D=\frac{15,000}{2808}
\end{array}=5.34 \\
& =5 \mathrm{~m} \text { Dept. }
\end{array}
$$

Q2) A piece of land

1) Use the trap rule to estimate the area of the piece of land

$$
\text { Area }=\frac{12}{2}(0+35 \cdot 5+2(22+15 \cdot 5+31+25 \cdot 5+22 \cdot 6)]=1612 \cdot 2 \mathrm{~m}^{2}
$$

2) The land is valued at $€ 280,000$ per hectare. Find the value of the piece of land
Note: 1 hectare $=10,060 \mathrm{~m}^{2} \quad \frac{1612.2}{10000} \times 280,000=(45141.6$
Using the trap rule when missing a width (h) or a height (y)

The area of the gwen shape is estimated to be $732 \mathrm{~cm}^{2}$ Find x. in cm .

$$
\begin{aligned}
& 732=\frac{x}{2}(0+0+2(6+13+13+9+12+16+23+18+9) \\
& 732=\frac{x}{2}(238) \quad \text { Cal. } \\
& \text { multiply } \\
& 1464=x(238) \\
& \frac{1464}{238}=x \\
& 6.15 \mathrm{~cm}=x
\end{aligned}
$$

