

PROJECT MATHS

Text & Tests

Coordinate Geometry – The Line

Key words

Cartesian plane quadrant vertex horizontal vertical perpendicular parallel positive negative linear equation translation intersection collinear

Section 3.2 Distance between two points

formula Loy Tables Pg 18 $|PQ| = \int (x_2 - x_1)^2 + (y_2 - y_1)^2$ Formula

Distance

Method: 1) Label the two points (x1, y1) (x2, y2)

Notes

Section 3.2 Distance between two points

The given diagram shows the points $A(x_1, y_1)$ and $B(x_2, y_2)$.

$$|BC| = y_2 - y_1$$
 and $|AC| = x_2 - x_1$

Using the Theorem of Pythagoras:

$$|AB|^2 = |AC|^2 + |BC|^2$$

= $(x_2 - x_1)^2 + (y_2 - y_1)^2$

$$= (x_2 - x_1)^2 + (y_2 - y_1)^2$$

 $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

The distance between $A(x_1, y_1)$ and $B(x_2, y_2)$ is $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Example 2

If the distance between the points (2, 3) and (5, k) is $\sqrt{10}$, find two possible values of *k*.

The distance between $A(x_1, y_1)$ and $B(x_2, y_2)$ is $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

$$(x_1, y_1)$$
 (x_2, y_2) \downarrow (x_3) (x_4)

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(5 - 2)^2 + (k - 3)^2}$

$$= \sqrt{9 + k^2 - 6k + 9}$$

$$=\sqrt{k^2-6k+18}$$

Distance =
$$\sqrt{10}$$
 $\Rightarrow \sqrt{k^2 - 6k + 18} = \sqrt{10}$
 $\Rightarrow k^2 - 6k + 18 = 10$
 $\Rightarrow k^2 - 6k + 8 = 0$

$$\Rightarrow (k-2)(k-4) = 0$$

$$\Rightarrow k = 2 \text{ or } k = 4$$

Exercise 3.2

1. The points A, B, C and D are shown.

Find (i) AB

(ii) AC

J(x2 - x1)2 (42-41)2

(iii) |AD|. Is |DC| = |BC|?

1) A (3,5) b(8,2) 14B1

 $|AB|^{2}\sqrt{(8-3)^{2}+(2-5)^{2}}$

 $\sqrt{(5)^2+(-3)^2}$

 $\sqrt{25+9}$

J34 surd [SD]

Decimal 5.831

 $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

ii) A(3.5) C(2,-2)

IAD (-4-3) 2+ (3-5) $|A(=5(2-3)^2+(-2-5)^2$

J(-1)2+(-7)2

J+1+49

J50 surd

= 7.071

iii A(3,5) (D(-4,5)

J (-2)2

DC | = D (4,3) ((3-2) $\int (2+4)^2 + (-2-3)^2$ J62+(-5)2 $\sqrt{36+25}$ = 561 |BC| = B(8,2) ((2,-2)) $\int (2-8)^2 + (-2,-2)^2$ J(-6)2+(-4)2 536+16

Exercise 3.2

$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

J52

|BC| 7 | DC| J52 7 J61

Pg 53 Q3 H(W.

- 2. The given diagram shows the points D, E and F.
 - (i) Write down the lengths of [FE] and [ED].
 - (ii) Find DF.

Use the Theorem of Pythagoras to show that the triangle DEF is right-angled.

Exercise 3.2

$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

- (ii) (1, 5) and (2, 3)
- (iii) (−1, 4) and (2, 6)

- (iv) (3, -2) and (-5, 3)
 - (v) (-6, -1) and (1, -3) (vi) (4, -2) and (0, -5)

Exercise 3.2

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- **4.** Find |AB| in each of the following:
 - (i) A = (2, -4), B = (3, 1)
 - (iii) A = (0, -2), B = (3, -1)
- (ii) A = (0, 3), B = (-2, 5)(iv) A = (5, -2), B = (3, -4)

5. A(1, 1), B(3, 6) and C(5, 1) are the vertices of a triangle. Show that |AB| = |BC|.

53

Exercise 3.2

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

6. X(1, 6), Y(-3, -1) and Z(2, -2) are the vertices of a triangle. Find the lengths of the 3 sides and then state which two sides are equal in length. Hence state what type of triangle is XYZ.

53

Exercise 3.2

7. A wire ABC is used to support a flag pole [BD], as shown on the right.
Write down the coordinates of A, B, C and D.
Calculate the length of wire needed to support the pole.

 $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Exercise 3.2

 $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

8. The centre of a circle is (-3, 1) and (4, 3) is a point on the circle. Find the length of the radius of the circle.

53

Exercise 3.2

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

9. The points A(2, 1), B(6, 1), C(5, -2) and D(1, -2) are the vertices of a parallelogram. Plot the parallelogram on a coordinated plane.

Find (i) |AC| (ii) |BD|.

Are the diagonals equal in length?

53

Exercise 3.2

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

10. The distance between the points (5, 2) and (4, k) is $\sqrt{2}$. Find two possible values for k.

Exercise 3.2

 $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

11. X(3, *k*) and Y(−1, 2) are two points. If |XY| = 5, find two possible values for k.

Exercise 3.2

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

12. Jordan lives (3 km West, 4 km South) of the centre of the town marked O in the given diagram.

Michelle lives (2 km West, 3 km North) of Jordan's house.

How far does Michelle live from the centre of town?

Exercise 3.2 Answers

- **1.** (i) $\sqrt{34}$ (ii) √50
- (iii) $\sqrt{53}$; No
- **2.** (i) |FE| = 6, |ED| = 3 (ii) $\sqrt{45}$ **3.** (i) $\sqrt{10}$ (ii) $\sqrt{5}$ (iii) $\sqrt{13}$ (iv) $\sqrt{89}$ (v) $\sqrt{53}$ (vi) 5
- (iv) √89
- (vi) 5
- (v) $\sqrt{53}$
- **4.** (i) $\sqrt{26}$ (ii) $\sqrt{8}$ (iii) $\sqrt{10}$ (iv) $\sqrt{8}$
- **6.** $|XY| = \sqrt{65}$; $|XZ| = \sqrt{65}$; $|YZ| = \sqrt{26}$; $|XY| = |XZ| \Rightarrow \triangle XYZ$ is isosceles
- **7.** A(2, 0), B(6, 7), C(10,0), D(6,0); $2\sqrt{65}$ units
- **8.** √53
- **9.** (i) $\sqrt{18}$ (ii) $\sqrt{34}$; No
- **10.** k = 1 or k = 3
- **11.** k = 5 or k = -1
- **12.** $\sqrt{26}$ km

Answers