

PROJECT MATHS

Coordinate Geometry – The Line

Key words

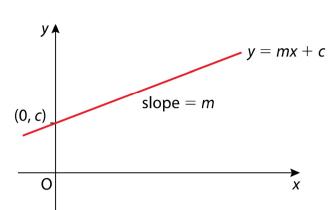
Cartesian plane origin quadrant horizontal axis vertex parallel vertical perpendicular positive negative linear equation area translation collinear intersection

Section 3.6 The equation y = mx + c —

Notes

Section 3.6 The equation y = mx + c

If the equation of a line is in the form


$$y = mx + c$$
, then

- (i) the slope is m
- (ii) the line intersects the y-axis at (0, c).

The point (0, c) is called the **y-intercept**.

If a line is in the form 3x + 2y - 8 = 0, change the equation to the form y = mx + c.

The slope is the value of m.

Example 1

Find the slope of the line 3x - 2y - 9 = 0.

We write the equation in the form y = mx + c.

$$3x-2y-9=0$$

 \Rightarrow -2y = -3x + 9 ... leave the y term only on left-hand side

 \Rightarrow 2y = 3x - 9 ...

multiply each term by -1

 $y = \frac{3}{2}x - \frac{9}{2}\dots$ divide each term by 2

 \therefore the slope of the line is $\frac{3}{2}$

Example 2

 ℓ is the line 2x - 3y + 6 = 0 and m is the line 3x + 2y - 4 = 0. Show that ℓ is perpendicular to m.

Slope of ℓ :

$$2x-3y+6=0$$

$$\Rightarrow$$
 $-3y = -2x - 6$

$$\Rightarrow$$
 3v = 2x + 6

$$\Rightarrow 3y = 2x + 6$$

$$\Rightarrow y = \frac{2}{3}x + 2$$

$$\Rightarrow$$
 slope of $\ell = \frac{2}{3}$

Slope of *m*:

$$3x + 2y - 4 = 0$$

$$\Rightarrow$$
 2y = -3x + 4

$$\Rightarrow y = -\frac{3}{2}x + 2$$

$$\Rightarrow y = -\frac{3}{2}x + 2$$

$$\Rightarrow \text{ slope of } m = -\frac{3}{2}$$

Slope of
$$\ell \times$$
 slope of $m = \frac{2}{3} \times \left(-\frac{3}{2}\right)$
$$= \frac{-6}{6} = -1$$

Since the product of the two slopes = -1, the lines are perpendicular.

Exercise 3.6

$$y = mx + c$$

1. Express each of the following lines in the form y = mx + c and hence write down the slope of the line:

(i)
$$x + y - 4 = 0$$

(ii)
$$3x + y - 5 = 0$$

(iii)
$$2x + 3y - 7 = 0$$

(iv)
$$5x - 2y + 3 = 0$$

(v)
$$3x + 4y - 2 = 0$$

(vi)
$$3x - 4y + 6 = 0$$
.

Exercise 3.6

y = mx + c

- **2.** Express the line ℓ : 2x + 3y 7 = 0 in the form y = mx + c.
 - (i) Write down the slope of ℓ .
 - (ii) What is the slope of any line parallel to ℓ ?
 - (iii) What is the slope of any line perpendicular to ℓ ?

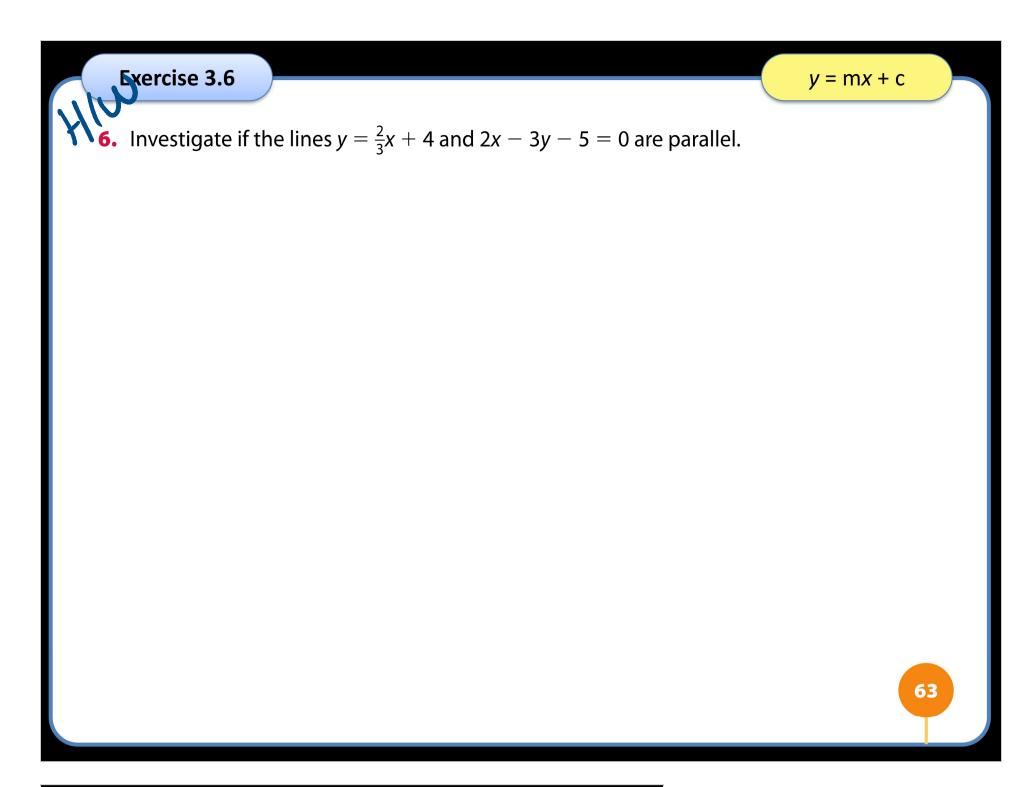
63

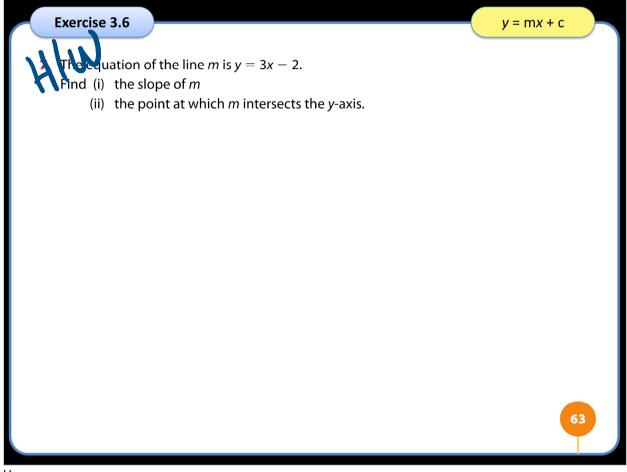
Exercise 3.6

3. Show that the lines x - 2y + 1 = 0 and 3x - 6y - 7 = 0 are parallel. What is the slope of any line perpendicular to these lines?

63

4. Show that the lines 2x + 3y - 4 = 0 and 3x - 2y + 1 = 0 are perpendicular to each other.


Exercise 3.6

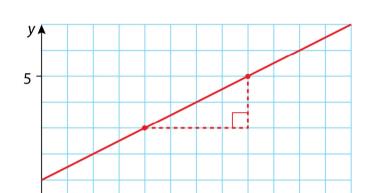

y = mx + c

5. If the equation of the line ℓ is y = 3x - 4, write down the equation of any line, in the

(i) parallel to ℓ

(ii) perpendicular to ℓ .

- **8.** The equations of six lines are given below:
 - a: y = 2x 3


- c: y = x + 3 e: $y = -\frac{1}{2}x + 4$ d: y = -2x 4 f: y = 2x 2
- b: $y = \frac{1}{2}x + 5$ (i) Name a pair of parallel lines.
- (ii) Name a pair of perpendicular lines.
- (iii) Which line crosses the y-axis at (0, 4)?
- (iv) Which line crosses the y-axis at (0, -3)?

y = mx + c

10

Exercise 3.6

9. By finding the slope and *y*-intercept, write down the equation of the given line.

Exercise 3.6

y = mx + c

10. If the line x + 2y - 6 = 0 is parallel to the line 2x + ky - 5 = 0, find the value of k.

64

Exercise 3.6

y = mx + c

11. If the line 2x - 3y + 7 = 0 is perpendicular to the line 3x + ky - 4 = 0, find the value of k.

64

12. For what value of k is the line 2x + ky - 4 = 0 parallel to the line x + 3y + 7 = 0?

Exercise 3.6 Answers

1. (i) y = -x + 4; -1 (ii) y = -3x + 5; -3

(iii)
$$y = -\frac{2}{3}x + \frac{7}{3}$$
; $-\frac{2}{3}$ (iv) $y = \frac{5}{2}x + \frac{3}{2}$; $\frac{5}{2}$

(v)
$$y = -\frac{3}{4}x + \frac{1}{2}; -\frac{3}{4}$$
 (vi) $y = \frac{3}{4}x + \frac{3}{2}; \frac{3}{4}$

- **2.** $y = -\frac{2}{3}x + \frac{7}{3}$;
 - (i) $-\frac{2}{3}$ (ii) $-\frac{2}{3}$ (iii) $\frac{3}{2}$

- **3.** −2
- **5.** (i) y = 3x + 6 (ii) $y = -\frac{1}{3}x + 11$
- **6.** Yes; parallel

- 7. (i) 3 (ii) (0, -2)8. (i) a + f (ii) a + e or b + d
 - (iii) e
- **9.** x 2y + 2 = 0 or $y = \frac{1}{2}x + 1$
- **10.** k = 4 **11.** k = 2 **12.** k = 6

Answers