PROJECT MATHS

Text 5 Tests Leaving 5 Certificate

yanter 17

Graphing Functions

Section 17.7 Graphing exponential functions

Line: $a \times b$ Quadratic = $a \times^2 + b \times + c$ Cubic = $a \times^3 + b \times^2 + c \times + d$ Exponential: $a \times b$ The power will be the variable. $A(x)=2^{x}$

Example 1

Draw the graph of the function $f(x) = 2.3^x$ in the domain $-2 \le x \le 3$.

- (i) Use your graph to find an estimate for f(2.5)
- (ii) Use your graph also to find the value of x for which f(x) = 7.

Example 2

Draw the graph of the function $f(x) = 10 \cdot \left(\frac{1}{2}\right)^x$ in the domain $0 \le x \le 4$.

- (i) Use your graph to find an estimate of f(0.5)
- (ii) Use your graph to solve the equation f(x) = 3.

1. This is the graph of $f(x) = 2^x$.

Use the graph to write down

(i)
$$f(0) = 1$$
 (ii) $f(1) = 2$ (iii) $f(1.5) = 2.5$

- f(3) is not shown on the graph.
- (iv) What is f(3)? $2^{(3)} = 2 \times 2 \times 2 = 8$
- (v) For what value of x is f(x) = 5?

2. Copy and complete the table below and then draw the graph of the function $f(x) = 3^x$.

X	-2	-1	0	1	2	3
3 ^x	• [1	$\frac{1}{3}$ •33	1	3	9	27

Use your graph to write down

(i)
$$f(1.5) = 6$$

(ii) the value of x for which f(x) = 4.

3. Copy and complete the table below.

X	-2	-1	0	1	2
2 ^x	<u>1</u> 4	•5	1	2	4
4(2×)	1	2	4	8	16

H(W)

Use the table to draw a sketch of the function $f(x) = 4.2^x$ in the domain $-2 \le x \le 2$. Use your graph to find an estimate for f(0.5).

- **4.** On the right is the graph of $f(x) = k \cdot 2^x$, where $k \in \mathbb{N}$.
 - (i) Write down the value of *k*.
 - (ii) f(2) is not shown on the graph. What is f(2)?
 - (iii) Use this graph to estimate the value of x for which f(x) = 1.

5. Three graphs (A), (B) and (C) are sketched on the right.

Associate each graph with one of the functions given below:

$$f(x) = 2^x$$

$$f(x) = 3^x$$

$$f(x) = 3.3^x$$

6. Copy and complete the table below and hence draw the graph of the function $f(x) = 3^{-x}$ in the domain $-2 \le x \le 3$.

X	-2	-1	0	1	2	3
$f(x)=3^{-x}$						

Use your graph to estimate

- (i) f(-1.5) (ii) the value of x when f(x) = 4.

7. Graphed on the right is the function $f(x) = a \cdot b^x$. Copy and complete the table below and use the table and the graph to find the values of a and b.

X	$f(x)=a.b^{x}$	y
0		
1		

8. The diagram below shows the graphs of

$$y = 2^x$$
, $y = 5^x$, $y = \left(\frac{1}{2}\right)^x$ and $y = 3^{-x}$.

Use different values for *x* and the corresponding *y*-values to match each graph to its equation.

- 9. Anto is told that the given curve is the graph of either
 - (a) $f(x) = k \cdot 2^x$ or (b) $f(x) = k \cdot 3^x$.
 - (i) Find the value of *k*.
 - (ii) Write down which of the two functions the curve represents.

10. The curve $y = a(2^x)$ passes through the point (1, 3). Find the value of a.

11. The curve $y = a(b^x)$ passes through the points (1, 10) and (3, 250).

Find the value of *a* and the value of *b*.

12. $f: x \to 2x + 3$, $g: x \to x^2 + 3$, and $h: x \to 3(2^x)$ are three functions.

Table A

X	y
0	3
1	6
2	12
3	24
4	48

Table B

y
3
5
7
9
11

Table C

X	y
0	3
1	4
2	7
3	12
4	19

- (i) Match the table of outputs with the correct function.
- (ii) Which function is increasing at the quickest rate?

13. A: $y = 2^x$; B: y = 2x + 1; C: $y = x^2 + 1$ are three functions.

Match each graph below to its function.

(i)

(ii)

(iii)

- 14. Here are three statements and three graphs:
 - (i) A car worth €60 000 decreases in value by €10 000 each year.
 - (ii) Property prices have fallen in value by 10% each year for the past four years.
 - (iii) A bunjee jumper jumps off a bridge and her height above the ground is recorded every second.

Match each statement with its graph and explain your answer in each case.

15. The functions f and g are defined as follows:

 $f: x \to 3^x$ and $g: x \to 4x^2 + 1$ in the domain $0 \le x \le 5$.

- (i) What type of function is *f*?
- (ii) What type of function is *g*?
- (iii) Which function is increasing at the faster rate between x = 0 and x = 3?
- (iv) Which function is increasing faster between x = 3 and x = 5?

16. Two functions f and g are defined as follows:

$$f: x \to 2^x, g: x \to 9x - 3x^2 - 1.$$

Complete the table below and use it to draw the graphs of f and g for $0 \le x \le 3$.

X	0	0.5	1	1.5	2	2.5	3
f(x)							
g(x)							

(i) Use your graph to estimate the value(s) of x for which

$$2^{x} = 9x - 3x^{2} - 1$$
.

(ii) If $2^k = 6$, use your graph to estimate the value of k.

Answers 17.7

1. (i) 1

(ii) 2

(iii) 2.8

(iv) 8

- (v) 2.3
- **2.** $(-2, \frac{1}{9}), (-1, \frac{1}{3}), (0, 1), (1, 3), (2, 9), (3, 27);$
 - (i) 5.2

(ii) 1.3

3.

X	-2	-1	0	1	2
2 ^x	<u>1</u> 4	<u>1</u> 2	1	2	4
4.2 ^x	1	2	4	8	16

; 5.7

- (i) k = 3
- (ii) 12

- **5.** $A: f(x) = 3.3^x$; $B: f(x) = 3^x$; $C: f(x) = 2^x$
- **6.** $(-2, 9), (-1, 3), (0, 1), (1, <math>\frac{1}{3}), (2, \frac{1}{9}), (3, \frac{1}{27});$
 - (i) 5.2
 - (ii) -1.3
- 7. a = 3, b = 2
- **8.** $A:y=(\frac{1}{2})^x$; $B:y=3^{-x}$; $C:y=5^x$; $D:y=2^x$
- 9. (i) k = 5 (ii) $f(x) = k.2^x$
- **10.** a = 1.5
- **11.** a = 2, b = 5

Answers 17.7

- **12.** (i) Table $A:h:x\to 3(2^x)$; Table $B:f:x\to 2x+3$; Table $C:g:x\to x^2+3$
 - (ii) $h: x \to 3.(2^x)$
- **13.** *A* and (ii); *B* and (iii), *C* and (i)
- **14.** A = (iii); height will decrease, then increase B = (i); decrease by the same amount each year

C = (ii); decrease by different amounts each year

- **15.** (i) Exponential
 - (ii) Quadratic
 - (iii) $g: x \to 4x^2 + 1$
 - (iv) $f: x \rightarrow 3^x$

16.

X	0	0.5	1	1.5	2	2.5	3
2 ^x	1	1.4	2	2.8	4	5.7	8
$9x - 3x^2 - 1$	-1	2.75	5	5.75	5	2.75	-1

- (i) 0.275, 2.15
- (ii) 2.6