PROJECT MATHS

Text 5 Tests Leaving 5 Certificate

Graphing Functions

Section 17.3 Using and interpreting quadratic graphs —

1. The curve on the right is the graph of the function

$$f(x)=x^2-1.$$

Use the graph to find

- (i) the value of f(x) when x = 2 f(x) = 3(ii) the value of f(x) when x = -2 f(-2) = 3
- (iii) the minimum point of the curve
- (iv) the values of x when f(x) = 0 Roots cuts
- (v) the values of x when f(x) = 3.

$$f(2) = (2)^{2} - 1 \qquad (-2,0)$$

$$= 3$$

$$= 3$$

Min Turning Point

2. Shown below is the graph of the function

$$f(x) = x^2 - 3x - 4$$
 in the domain $-2 \le x \le 5$.

Use the graph shown to write down

- (i) the values of x for which f(x) = 0

- (v) the value of $f(\frac{1}{2})$ 5.1 (vi) the coordinates of the minimum point of the curve (1-5,6-2)
- (vii) the minimum value of f(x).

(ii) the values of
$$x$$
 for which $f(x) = 6$
(iii) the values of x for which $f(x) = -4$
(iv) the value of $f(2) = -6$
(iv) the value of $f(1) = -6$

3. Drawn below is a graph of the function

$$f: x \to 3 + 2x - x^2$$
, for $-2 \le x \le 4$, $x \in R$.

Use the graph to write down

- (i) the roots of the equation f(x) = 0
- (ii) the values of x for which f(x) = 3
- (iii) the value of $f(2\frac{1}{2})$
- (iv) the maximum value of f(x)
- (v) the coordinates of the maximum point of f(x)
- (vi) the range of values of x for which f(x) is increasing
- (vii) the range of values of x for which f(x) is positive
- (viii) the equation of the axis of symmetry of the curve.

- **4.** Draw the graph for the function $f(x) = 2x^2 x 3$ in the domain $-2 \le x \le 3$. Use your graph to find
 - (i) the values of x for which f(x) = 0
 - (ii) the values of x for which f(x) = 6
 - (iii) the coordinates of the minimum point of the curve
 - (iv) the values of x for which f(x) < 0.

Lurve

- 5. The graphs of the functions $f(x) = x^2$ and g(x) = 2x + 3 are shown on the right.
 - (i) Write down the coordinates of the points where the curve and line meet. (3, 9)
 - (ii) Solve the equation $x^2 = 2x + 3$.
 - (iii) What is the connection between the answers in (i) and (ii) above? Same x values.
 - (iv) Explain the meaning of the equation f(x) = g(x). Where line 4 curve inhersect, x values (v) Use the graph to find the range of values
 - (v) Use the graph to find the range of values of x for which f(x) < g(x).

$$\chi^{2} = 2x + 3$$
 Solve.
 $-2x | \chi^{2} - 2x = 3 | -2x$
 $-3 | \chi^{2} - 2x - 3 = 0 | -3$

Factors
$$(x^2 - 2x - 3 = 0)$$

 $(x^2 - 2x - 3 = 0)$
 $(x^3 - 3)(x + 1) = 0 + 1x$
 $(x^3 - 3)(x + 1) = 0 + 1x$
 $(x^3 - 3)(x + 1) = 0 + 1x$
 $(x^3 - 3)(x + 1) = 0 + 1x$
 $(x^3 - 3)(x + 1) = 0 + 1x$
 $(x^3 - 3)(x + 1) = 0 + 1x$
 $(x^3 - 3)(x + 1) = 0 + 1x$
 $(x^3 - 3)(x + 1) = 0 + 1x$

6. Here are two graphs:

Use the graphs to solve these equations:

(i)
$$3x - x^2 = 0$$

(ii)
$$x^2 - 3x - 4 = 0$$

(iii)
$$3x - x^2 = -3$$

(iv)
$$x^2 - 3x - 4 = -2$$
.

7. Using the same axes and the same scales, graph the function $f: x \to x^2 + 3x - 3$ and $3: x \rightarrow x - 2$ in the domain $-4 \le x \le 2, x \in R$.

(1)	S
f(x)	
X	if(x)
	+
-4	,
-3	-3
-2	-5
,	
-1	-5
0	-3
	1
2	

$$\frac{x}{-4}$$
 $\frac{-6}{-6}$ $\frac{-6}{-7}$ $\frac{-4}{-1}$ $\frac{-3}{-1}$ $\frac{-2}{-1}$

Use the graph to estimate

cuts. (i) the roots of the equation $x^2 + 3x - 3 = 0$ xaxis(ii) the roots of the equation $x^2 + 3x - 3 = -2$

- (iii) the roots of the equation f(x) = g(x) $\sqrt{x^2 3 \cdot 3}$ and x = -7 (iv) the minimum value of f(x). $(2 \cdot 5, 4 \cdot 5)$ $(1, -1 \cdot 5)$ What is the meaning of f(x) < g(x)?

What is the meaning of f(x) < g(x)?

Now use your graph to find the range of values of x for which f(x) < g(x).

Quadratic Graphs and Real Life Problems. Method

- (1) Use your calculator in mode 3 to get the panks on the graph.
- (2) Draw the graph on an axis go up/down by the same unit ie 1,2,3 or 2,4,6.
- (3) When given the value of x or told f(x) go out on the x axis (harizantal line) to touch the graph and read the answer off the y axis.
- 4) When given a value for y of f(x) = y, go up or down on the y axis (vertical line) and read answer off the x axis.

 HIW Pg 487 Q1

- 8. The equation of the given curve is $y = (x + 2)^2$.
 - (i) Solve the equation $(x + 2)^2 = 0$.
 - (ii) Did you get one or two values for x?
 - (iii) If you got one value only, the value for x that you found is called a **repeated root**.

 Explain how the graph reflects this repeated root.

9. The diagram below shows the graphs of $y = x^2 + x - 2$, $y = x^2 - 6x + 9$ and $y = x^2 - 3x + 3$.

- (i) By substituting x = 0 (or any other value of x) into each equation, work out which graph corresponds to which equation.
- (ii) Which function has a repeated root?
- (iii) Use the graph to solve the equation

$$x^2 + x - 2 = x^2 - 6x + 9$$
.

Answers 17.3

1. (i) 3

- (ii) 3 (iii) (0, -1)
- (iv) -1, 1
 - (v) -2, 2
- **2.** (i) x = -1, 4 (ii) x = -2, 5 (iii) x = 0, 3

- (iv) -6 (v) -5.25 (vi) (1.5, -6.25)
- (vii) -6.25
- 3. (i) -1, 3
- (ii) 0, 2
- (iii) 1.75

- (iv) 4
- (v) (1, 4)
- (vi) -2 < x < 1
- (vii) -1 < x < 3
- (viii) x = 1

- **4.** (-2, 7), (-1, 0), (0, -3), (1, -2), (2, 3), (3, 12)

 - (i) -1, $1\frac{1}{2}$ (ii) 2.4, -1.9

 - (iii) $(\frac{1}{4}, -3\frac{1}{8})$ (iv) $-1 < x < 1\frac{1}{2}$
- **5.** (i) (-1, 1), (3, 9) (ii) -1, 3
- - (iii) same x-values
 - (iv) x-values of points of intersection of f(x)and g(x)
 - (v) -1 < x < 3
- **6.** (i) 0, 3

- (ii) -1, 4
- (iii) -0.8, 3.8
- (iv) 3.6, -0.6
- 7. (i) -3.8, 0.8

(ii) -3.3, 0.3

- (iii) -2.4, 0.4
- (iv) -5.25; curve is below the line
- (v) -2.4 < x < 0.4
- **8.** (i) x = -2 (ii) one

 - (iii) x-axis is tangent to the curve at x = -2
- **9.** (i) $A:y=x^2+x-2$; $B:y=x^2-3x+3$; $C: y = x^2 - 6x + 9$
 - (ii) $y = x^2 6x + 9$
 - (iii) x = 1.6