# PROJECT MATHS

# Text 5 Tests Leaving 5 Certificate

# Algebra 1



# Section 1.10 Changing the subject of a formula -

Rearrange the gwen equation to make a letter the subject of the formula.

Use stabilizers to rearrange the equation.

Eg1) Express p in terms of t and k when tp-k=7k,  $t\neq 0$ .

Make p the subject of the formula we want pon its own

$$| \frac{1}{1} + \frac{1}{1} = \frac{$$

Eg2) make (x) the subject of the formula.

$$(1)_{+9} | x-y=2z$$
 $+9 | x=2z+y|+9$ 

$$3\frac{3x}{x} - 2y = 8y = 24 + 6y = 24$$

$$3\frac{3x}{x} - 2y = 8y = 24 + 6y = 24 +$$

### Notes

In the equation x = 2y - z, we say that x is expressed in terms of y and z, or that x is the **subject** of the formula.

If the formula is changed to the form z = 2y - x, then z is the subject of the formula.

If we rearrange a formula (or equation) so that there is a different variable on the left-hand side, we are said to have **changed the subject of the formula**.

The process of changing the subject of a formula is very similar to the steps we use when solving an equation.

The following examples will illustrate the basic rules for changing the subject of a formula.

An equation remains unchanged if the same operation is performed on both sides.

# Example 1

If bc - d = a, make c the subject of the formula.

# Example 2

If 
$$x = \frac{3y}{2} - 1$$
, make y the subject of the formula.

# Example 3

If 
$$a = \frac{bc}{b+c}$$
, make c the subject of the formula.

**Answer:** (i) 
$$x = \frac{y+4}{2}$$
 (ii)  $b = \frac{a+6}{8}$  (iii)  $d = \frac{c+1}{4}$  (iv)  $k = \frac{h+2}{2}$ 

- 1. Make the underlined letter the subject of the formula in each of the following:

- (i)  $2\underline{x} 4 = y$  (ii)  $a = 8\underline{b} 6$  (iii)  $c = 4\underline{d} 1$  (iv)  $h = 2\underline{k} 2$

Answer:

(iii) 
$$e = \frac{d + 12}{6}$$

(i) 
$$b = \frac{a+5}{3}$$
 (ii)  $w = \frac{b-2}{4}$  (iii)  $e = \frac{d+12}{6}$  (iv)  $h = \frac{-g+18}{5}$ 

2. Rearrange each of these formulas to make the underlined letter the subject:

(i) 
$$a = 3b - 5$$

(ii) 
$$b = 4w + 2$$

(iii) 
$$d = 6e - 12$$

(i) 
$$a = 3b - 5$$
 (ii)  $b = 4w + 2$  (iii)  $d = 6e - 12$  (iv)  $g = 18 - 5h$ 

Answer:

(iii) g = 5(p - 3h)

- 3. Copy and complete each of the following:
  - (i) v = u + at

(ii) 
$$ap + bq = k$$

(iii) 
$$p = \frac{g}{5} + 3h$$

$$v - \boxed{\phantom{a}} = at$$

$$ap = k - \square$$

$$p- \square = \frac{g}{5}$$

$$t = \dots$$

$$p = \frac{k - 1}{1}$$

$$p - p = q$$

$$g = \dots$$

i) 
$$x = y + 2z$$

(i) 
$$x = y + 2z$$
 (ii)  $x = \frac{b + 4c}{3}$ 

Answer:

(iii) 
$$x = \frac{-6y + 7}{3}$$
 (iv)  $x = 6y + 24$ 

(iv) 
$$x = 6y + 24$$

4. Make x the subject of the formula in each of these:

(i) 
$$x - y = 2z$$

(ii) 
$$3x - b = 4c$$

(iii) 
$$6y + 3x = 7$$

(i) 
$$x - y = 2z$$
 (ii)  $3x - b = 4c$  (iii)  $6y + 3x = 7$  (iv)  $\frac{x}{3} - 2y = 8$ 

(i)  $a = \frac{2b + 1}{4}$ 

Answer:

(iii) 
$$a = \frac{4b + 21}{7}$$

5. Make <u>a</u> the subject of the formula in each of these: (i)  $2a - b = \frac{1}{2}$  (ii) ab - 3a = 5

(i) 
$$2a - b = \frac{1}{2}$$

$$4a - 2b = 1$$
  
 $+2b$   $| 4a = 2b + 1 | 1 + 2b$   
 $-4$   $| 4 = 2b + 1 | 1 - 4$ 

factorize

$$a(b-3)=5$$

$$a = \frac{5}{b-3}$$

(iii) 
$$7(a - 3) = 4b$$

$$7a-21=4b$$
 $7a=4b+21$ 
 $-7$ 
 $-7$ 
 $-7$ 
 $-7$ 

**Answer:** (i) 
$$a = b(k + 2)$$

(ii) 
$$v = \frac{u}{s - 10}$$

6. (i) Make at the subject of the formula  $k = \frac{60}{k} - \frac{60}{2}$ .

$$bk = a - 2b$$
  
 $+2b$   $bk + 2b = a + 2b$   
 $b(k+2) = a$ 

(ii) Make v the subject of the formula  $s = \frac{u}{v} + 10$ .

$$s = \frac{u}{x} + 10.$$

$$VS = U + IOV$$
  
 $-IOV | VS - IOV = U | -IOV$   
 $-(S-D) | V(S-IO) = U | (S-IO)$   
 $V = U$   
 $S-IO$ 

Answer: (i) a = 2(c + 4b) (ii)  $a = \frac{4b + 3c}{2}$  (iii)  $x = \frac{y + 1}{6}$ 

7. Make the letter in brackets the subject of the formula in each of the following:

(i) 
$$c = \frac{a}{2} - 4b \dots (a)$$
 (ii)  $2(a - 2b) = 3c \dots (a)$ 

$$2c = a - 8b$$
  
 $+8b | 2c + 8b = 9 | +8b$ 

(ii) 
$$2(a-2b)=3c...(a)$$

$$2c = a - 8b$$

$$2a - 4b = 3c$$

$$14b | 2a = 3c + 4b | + 4b$$

$$2a - 4b = 3c$$

$$6x - 1 = y$$
 $+1|6x = y + 1|+1$ 
 $-6|x = y + 1|-6$ 

**Answer:** (iv) 
$$b = \frac{a+30}{10}$$
 (v)  $z = \frac{-3x+y}{2}$  (vi)  $b = \frac{4a+3c}{2}$ 

7. Make the letter in brackets the subject of the formula in each of the following:

(iv) 
$$5(b-3) = \frac{a}{2}...(b)$$
 (v)  $2\sqrt[3]{2}$   $2\sqrt[3]{2}$ 

(iv) 
$$5(b-3) = \frac{a}{2}$$
...(b) (v)  $x = \frac{y-2z}{3}$ ...(z) (vi)  $a = \frac{b}{2} - \frac{3c}{4}$ ...(b)   
 $22 + 2 + 3c$   $2 + 3c$ 

$$32 \frac{31}{x} = \frac{y-2z}{3} ... (z)$$

$$3x = y - 2z$$

$$42 \frac{b}{2} - \frac{3c}{4} ... (b)$$

$$3x = y - 2z$$

$$4a = 2b - 3c$$

$$4a = 2b - 3c$$

$$4a = 2b - 3c$$

$$4a + 3c = 2b$$

$$-3x$$

$$2z = y - 3x$$

$$-2$$

Answer:

(i) 
$$a = \frac{mn}{m-n}$$

(ii) 
$$n = \frac{b - a + d}{d}$$

8. (i) Make (a) the subject of the formula ma = n(m + a).

(ii) Make n the subject of the formula b = a + (n - 1)d.

(1) 
$$ma = n(m+a)$$
  
 $ma = mn + an$   
 $-a_1 | b-a = dn-d|-q$   
 $-a_1 | b-a = dn-d|-q$ 

$$ma = n(m + a).$$

$$b = a + (n - 1)d$$
.

i) 
$$y = \frac{3x}{20} - z$$

**Answer:** (i) 
$$y = \frac{3x}{20} - z$$
 (ii)  $b = \frac{6c}{2a - 3c}$ 

9. Make the letter in brackets the subject of the formula in each of the following:

(i) 
$$\frac{3x}{4} = 5(y + z) \dots (y)$$

(ii) 
$$\frac{ab}{3} = \frac{b}{2} + c \dots (b)$$

Answer:

(iii) 
$$y = \frac{x - tz}{2}$$

(iii) 
$$y = \frac{x - tz}{2}$$
 (iv)  $t = \frac{q^2}{p - q}$ 

9. Make the letter in brackets the subject of the formula in each of the following:

(iii) 
$$t = \frac{x - 2y}{z} \dots (y)$$

(iv) 
$$\frac{p}{q} = \frac{q}{t} + 1 \dots (t)$$

**Answer:** (i) 
$$a = \frac{b + xb}{x - 1}$$
 (ii)  $x = \frac{y + 4}{y - 3}$  (iii)  $r = \frac{pq}{p + q}$ 

10. Make the letter in brackets the subject of the formula in each of these:

(i) 
$$x = \frac{a+b}{a-b}...(a)$$

(ii) 
$$y = \frac{3x + 4}{x - 1} \dots (x)$$

(i) 
$$x = \frac{a+b}{a-b}...$$
 (a) (ii)  $y = \frac{3x+4}{x-1}...$  (x) (iii)  $p = \frac{qr}{q-r}...$  (r)

Answer:  $k = \frac{abe}{ab - d}$ 

**11.** Make k the subject of the formula  $ab = \frac{dk}{k - e}$ .

**12.** Which of the following are correct arrangements of  $s = w - \frac{g}{r}$ ?

A  $A = c - \frac{g}{2}$ 

В

$$g = r(s - w)$$

0

$$r = \frac{g}{s - w}$$

D

$$r = \frac{g}{w - s}$$

•

$$w = \frac{g}{r} + s$$

G

$$g = r(w - s)$$

- 13. By squaring each side, make the letter in brackets the subject of the formula in each of these:

- (i)  $x = \sqrt{a+b}$  ... (b) (ii)  $a = \sqrt{\frac{x}{y}}$  ... (y) (iii)  $k = 2\sqrt{\frac{a}{b}}$  ... (b)

**Answer:** 
$$F = \frac{9C + 160}{5}$$

**14.** If  $C = \frac{5}{9}(F - 32)$ , make F the subject of the formula.

**Answer:** (i) 
$$q = \frac{8p}{pt - 8}$$
 (ii)  $b = \frac{am}{ac + m}$ 

**15.** (i) Make q the subject of the formula 
$$t = \frac{8(p+q)}{pq}$$
.

(ii) If 
$$m = \frac{cab}{a-b}$$
, express b in terms of a, c and m.