# 18 Patterns and Sequences

# Section 18.3 Linear sequences

Term 1, Term 2, Term 3, T4, T5,...

common Will constant.

difference be

361

# Example 1

The *n*th term of a sequence is given by  $T_n = 3n - 4$ .

- (i) Write down the first three terms of the sequence and also  $T_{20}$ .
- (ii) Explain why the sequence is linear.

### Exercise 18.3

1. The <u>nth terms</u> of some sequences are given.

Write out the first four terms of each sequence.

nth term any term in the pattern In

(i) 
$$T_n = 2n$$
  $T_1 = 2(1) = 2$   $2, 4, 6, 8$   $T_2 = 2(2) = 4$   $+2+2$  constand common difference.  $T_3 = 2(3) = 6$   $t = 8(4) = 8$   $t = 8(4) = 8$ 

(ii) 
$$T_n = 3n + 1$$
  $n = 1, 2, 3, 4$  Terms
$$T_1 = 3(1) + 1 = 4$$

$$T_2 = 3(2) + 1 = 7$$

$$T_3 = 3(3) + 1 = 10$$

$$T_4 = 3(4) + 1 = 13$$

$$T_5 = 3(3) + 1 = 10$$

$$T_7 = 3(4) + 1 = 13$$

(iii) 
$$T_n = 4n - 3$$
  
 $T_1 = 4(1) - 3 = 1$   
 $T_2 = 4(2) - 3 = 5$   
 $T_3 = 4(3) - 3 = 9$   
 $T_4 = 4(4) - 3 = 13$ 

#### Exercise 18.3

1. The *n*th terms of some sequences are given. Write out the first four terms of each sequence.

(iv) 
$$T_n = 2n + 5$$
  
 $T_1 = 2(1) + 5 = 7$   
 $T_2 = 2(2) + 5 = 9$   
 $T_3 = 2(3) + 5 = 11$   
 $T_4 = 2(4) + 5 = 13$ 

(v) 
$$T_n = 5n - 4$$
  
 $T_1 = 5(1) - 4 = 1$   
 $T_2 = 5(2) - 4 = 6$   
 $T_3 = 5(3) - 4 = 11$   
 $T_4 = 5(4) - 4 = 16$ 

(vi) 
$$T_n = 7 - 2n$$
  
 $T_n = 7 - 2n$   
 $T_n = 7 - 2(1) = 5$   
 $T_n = 7 - 2(1) = 5$ 

2. Write out the first three terms of these sequences defined by the given nth term:

(i) 
$$T_n = 1 - 3n$$
  $T_1 = 1 - 3(1) = -2$ 

$$T_2 = 1 - 3(2) = -2 - 3 = -5$$

$$1 - 6 = -5$$

$$T_3 = 1 - 3(3)$$

$$1 - 9 = -8$$

(iii) 
$$T_n = n^2 + 1$$
  $T_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^2 + 1$   $T_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}^2 + 1$   $T_3 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}^2 + 1$   $T_4 = 10$   $T_5 = 10$   $T_6 = 10$   $T_7 = 10$ 

(iii) 
$$T_n = \frac{n+1}{4}$$
  $T_1 = \frac{(1)+1}{4} = \frac{2}{4} = \frac{1}{2}$   
 $T_2 = \frac{(2)+1}{4} = \frac{3}{4}$   
 $T_3 = \frac{(3)+1}{4} = \frac{4}{4} = 1$ 

## 3. The *n*th term of a sequence is $T_n = 2n + 3$ . Rule.

- (i) Write down the first five terms of the sequence.
- (ii) Find  $T_{20}$  and  $T_{100}$ .

$$T_1 = 2(1) + 3 = 5$$
 $T_{20} = 2(20) + 3$ 
 $T_{20} = 43$ 
 $T_{20} = 43$ 
 $T_{3} = 2(3) + 3 = 9$ 
 $T_{4} = 2(4) + 3 = 11$ 
 $T_{5} = 2(5) + 3 = 13$ 
 $T_{100} = 203$ 

4. If  $T_n = 2n - 6$ , show that  $T_1 + T_5 = 0$ .

$$I_1 = 2(1) - 6 = -4$$

$$T_5 = 2(5) - 6 = 4$$

$$T_1 + T_5$$

$$-4 + 4 = 0$$

5. Explain why each of these sequences is linear:

(i) 
$$-8$$
,  $-10$ ,  $-12$ ,  $-14$ , ...  
(iii)  $20$ ,  $10$ ,  $5$ ,  $2\frac{1}{2}$ , ...

(iii) 20, 10, 5, 
$$2\frac{1}{2}$$
, ...

7. The nth terms of six different sequences are:













- (i) Calculate the first four terms of each sequence.
- (ii) Calculate the 20th term of each sequence.
- (iii) Which of these sequences are linear?

- (i) Write down the first six terms of the sequence.
- (ii) Calculate the 100th term.

- Linear sequences can be found on this grid.
   Two are shown on the diagram.
  - (i) Find seven more linear sequences that have four terms or more.

Write down each sequence as an **increasing** sequence and find its next term.

| 44   | 34 | 24  | 14  | 4   | 3/ | 6  | 9 | 12 |
|------|----|-----|-----|-----|----|----|---|----|
| 40   | 30 | 5   | 20  | 10  | 11 | 15 | 8 | 1  |
| 44   | 37 | 30  | 23/ | 16  | 19 | 2  | 7 | 3  |
| 4    | 11 | 23/ | 21  | 122 | 12 | 1  | 6 | 9  |
| 1    | 7/ | 26  | 20  | 28  | 9  | 8  | 5 | 0  |
| 3/   |    | 10  |     |     |    | 12 |   | 8  |
| (36) | 6  | 11  | 13  | 40  | 0  | 1  | 3 | 2  |

(ii) The expressions below give the nth terms of these sequences.

Match each expression to its sequence.

3*n* 

6n - 2

10n - 6

2n + 1

4*n* 

3n + 1

n+2

5n + 1

7n - 5

# Answers

#### Exercise 18.3

- **1.** (i) 2, 4, 6, 8
  - (iii) 1, 5, 9, 13
  - (v) 1, 6, 11, 16
- 2. (i) -2, -5, -8
  - (iii)  $\frac{1}{2}$ ,  $\frac{3}{4}$ , 1
- **3.** (i) 5, 7, 9, 11, 13
- (ii) 43, 203

(ii) 4, 7, 10, 13

(iv) 7, 9, 11, 13

(vi) 5, 3, 1, -1

(ii) 2, 5, 10

- As the difference between the terms is a constant
- **6.** (i) Yes
  - (iii) No

- (ii) No
- (iv) Yes

# Answers

7. (i) 
$$A - 5$$
, 12, 19, 26  
 $B - 9$ , 8, 7, 6  
 $C - -2\frac{1}{2}$ ,  $-2$ ,  $-1\frac{1}{2}$ ,  $-1$   
 $D - 2$ , 5, 10, 17  
 $E - 60$ , 30, 20, 15  
 $F - 2$ , 4, 8, 16  
(ii)  $A - 138$   
 $B - -10$   
 $C - 7$   
 $D - 401$   
 $E - 3$   
 $F - 1048576$   
(iii) A, B, C are linear

**8.** (i) 5, 8, 11, 14, 17, 20

(ii) 302