Factorize the Difference of two squares.

Expressions in the form
$$ax^2+bx$$
 Eg Factorisc $5x^2+10x$

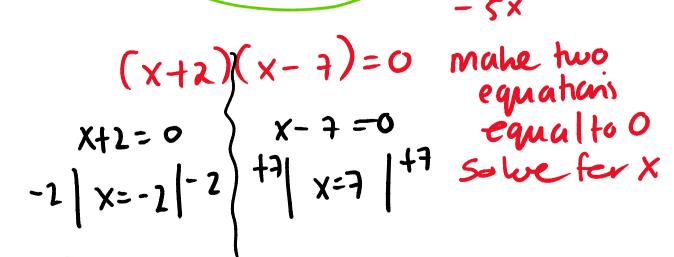
Perfect squared numbers
$$1^2 \quad 3^2 \quad 4^4 \quad 5^1 \quad 6^3$$

$$= 1 \quad 4 \quad 9 \quad 16 \quad 25 \quad 36$$

Factorize
$$x^2-y^2$$
 - the brackets must have the same values but different sign.

$$(x + y)(x - y)$$

H(F=)
$$2x^2 + 4x + 8$$
Dots $16x^2 - 25y^2$
 $2(x^2 + 2x + 4)$

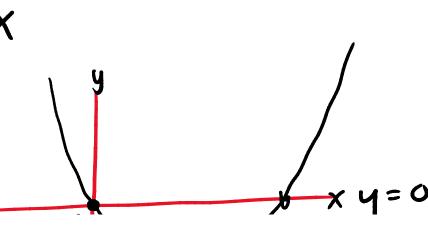

H(F
$$3x^{3} + 9x^{2} + 18x$$

=3x $3x(x^{2} + 3x + 6)$ Dots $100x^{2} - 64y^{2}$
 $1010x^{2} + 84y^{2}$
 $10x - 8y(10x + 8y)$

Solving Quadratic Equations from factors.

Solving $f(x) = x^2 - 5x - 14 = 0$ Finding the roots of the equations where it cuts the x-axis.

$$x^2 - 5x - 14 = 0$$

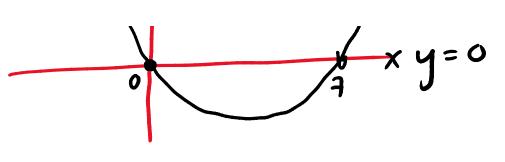

$$(x + 2)(x - 7) - 7x$$

+ $\frac{2}{5}x$

Ega) solve for
$$X$$

 $X^2 - 7X = 0$ HCF=X

$$X(X-Y)=0 \qquad X=0$$


$$X=0$$

Rooks

Homework Pg28 01->7

$$\begin{array}{c|c} X - 3 = 0 \\ +3 & | +3 \end{array}$$

Algebra 1

ympter

Section 2.2 Using factors to solve quadratic equations —

Notes

Take the equation $x^2 - 5x + 6 = 0$.

When x = 2, then $x^2 - 5x + 6$ becomes

$$(2)^2 - 5(2) + 6$$
, i.e., $4 - 10 + 6 = 0$

When
$$x = 3$$
, then $x^2 - 5x + 6$ becomes

$$(3)^2 - 5(3) + 6$$
, i.e., $9 - 15 + 6 = 0$

When x = 2 or x = 3, both sides of the equation are zero.

When this happens, we say that x = 2 and x = 3 are **solutions** or **roots** of the equation.

Solving a quadratic equation involves finding the values of *x* which satisfy the equation.

When a quadratic equation is in the form $ax^2 + bx + c = 0$, we express the left-hand side as the product of two linear factors and then solve the equation, as shown in the following examples.

27

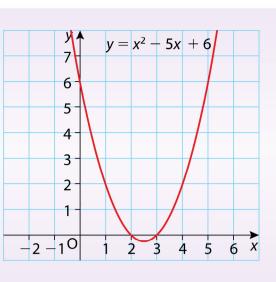
Example 1

Solve the equation $x^2 - 5x - 14 = 0$.

27

Example 2

Solve these equations:


(i)
$$2x^2 - 9x = 0$$

(ii)
$$4x^2 - 25 = 0$$

Discovery

The curve on the right is called a **parabola**. It is the graph of $y = x^2 - 5x + 6$.

- > Can you use the graph to solve the equation $x^2 5x + 6 = 0$?
- Factorise $x^2 5x + 6$ and then solve the equation $x^2 5x + 6 = 0$.
- > What are the links between your answers and the graph?

28

Exercise 2.2

Solve each of the following equations:

1.
$$(x-4)(x+1)=0$$

28

Exercise 2.2

2.
$$(2x-1)(3x+6)=0$$

3.
$$x(2x-5)=0$$

Exercise 2.2

Solve each of the following equations:

4.
$$x^2 - 2x - 3 = 0$$

28

Exercise 2.2

5.
$$x^2 - 8x + 12 = 0$$

6.
$$x^2 - 4x - 5 = 0$$

Exercise 2.2

Solve each of the following equations:

7.
$$x^2 - 2x - 8 = 0$$

28

Exercise 2.2

8.
$$x^2 + 2x - 15 = 0$$

9.
$$2x^2 - 5x + 2 = 0$$

Exercise 2.2

Solve each of the following equations:

10.
$$6x^2 - x - 2 = 0$$

28

Exercise 2.2

11.
$$4x^2 - 29x + 7 = 0$$

12.
$$9x^2 - 9x - 28 = 0$$

Exercise 2.2

Solve each of the following equations:

13.
$$4x^2 - 12x + 5 = 0$$

28

Exercise 2.2

14.
$$3x^2 - 13x - 10 = 0$$

15.
$$6x^2 + 17x - 3 = 0$$

Exercise 2.2

Solve each of the following equations:

16.
$$x^2 - 7x = 0$$

28

Exercise 2.2

17.
$$2x^2 - 5x = 0$$

18.
$$3x^2 + 4x = 0$$

Exercise 2.2

Solve each of the following equations:

19.
$$2x^2 - 9x = 0$$

28

Exercise 2.2

20.
$$3x^2 + 10x = 0$$

21.
$$5x^2 - 12x = 0$$

Exercise 2.2

Solve each of the following equations:

22.
$$x^2 - 9 = 0$$

28

Exercise 2.2

23.
$$x^2 - 49 = 0$$

24.
$$4x^2 - 9 = 0$$

Exercise 2.2

Solve each of the following equations:

25.
$$4x^2 - 25 = 0$$

28

Exercise 2.2

26.
$$9x^2 - 16 = 0$$

27.
$$4x^2 - 1 = 0$$

Exercise 2.2

Solve each of the following equations:

28.
$$(x-3)(x-2)=20$$

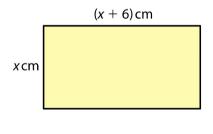
28

Exercise 2.2

29.
$$(2x-5)(x-2)=15$$

30.
$$2x(x-2)=3(x+10)$$

(2x + 1) cm

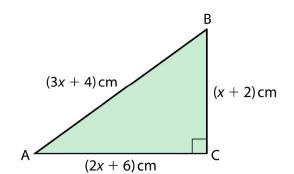

Exercise 2.2

- **31.** (i) Show that the area of this rectangle in cm² is equivalent to $2x^2 + 5x + 2$.
- (x + 2) cm
- (ii) If the area of the rectangle is 14 cm²,
 - (a) form an equation in x and solve it.
 - (b) write down the length and width of the rectangle.

28

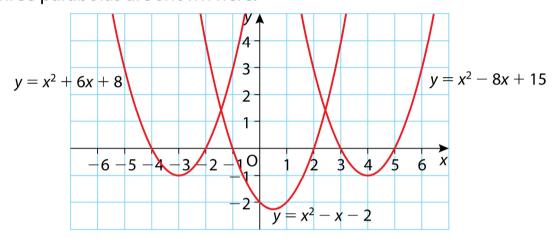
Exercise 2.2

32. The rectangle and triangle below each have the same area.


(x + 3) cm

- (i) Write an expression in *x* for
 - (a) the area of the rectangle
- (b) the area of the triangle.
- (ii) Form an equation and solve it to find the value of x.Hence find the dimensions of the rectangle.Why did you take only one value for x?

2


Exercise 2.2

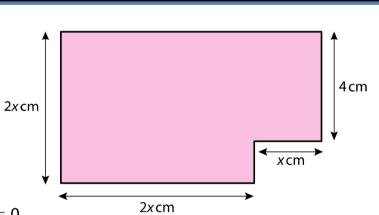
- **33.** In the given right-angled triangle, the lengths of the scales are given.
 - (i) Use the theorem of Pythagoras to write down an equation in x.
 - (ii) Solve this equation.
 - (iii) Write down the length of [AB].

Exercise 2.2

34. Three parabolas are shown here.

Use the graphs above to solve the following equations (each has two solutions).

(i)
$$x^2 - 8x + 15 = 0$$


(ii)
$$x^2 + 6x + 8 = 0$$
 (iii) $x^2 - x - 2 = 0$

(iii)
$$x^2 - x - 2 = 0$$

Exercise 2.2

- **35.** The diagram shows a shape in which all the corners are right angles. The area of the shape is 48 cm².
 - (i) Form an equation, in terms of x, for the area of the shape. Show that the equation can be simplified to $x^2 + x - 12 = 0$.

(ii) Solve the equation $x^2 + x - 12 = 0$ and hence calculate the perimeter of the shape.

Exercise 2.2 Answers

1.
$$x = 4$$
 or $x = -1$

1.
$$x = 4 \text{ or } x = -1$$

2. $x = \frac{1}{2} \text{ or } x = -2$
3. $x = 0 \text{ or } x = \frac{5}{2}$
4. $x = -1 \text{ or } x = 3$
5. $x = 2 \text{ or } x = 6$
6. $x = -1 \text{ or } x = 5$
7. $x = -2 \text{ or } x = 4$
8. $x = 3 \text{ or } x = -5$

3.
$$x = 0$$
 or $x = \frac{5}{2}$

4.
$$x = -1$$
 or $x = 3$

6.
$$x = -1$$
 or $x = 5$

7.
$$x = -2$$
 or $x = 4$

8.
$$x = 3$$
 or $x = -3$

9.
$$x = \frac{1}{2}$$
 or $x = 2$

9.
$$x = \frac{1}{2}$$
 or $x = 2$
10. $x = \frac{2}{3}$ or $x = -\frac{1}{2}$
11. $x = \frac{1}{4}$ or $x = 7$
12. $x = -\frac{4}{3}$ or $x = \frac{7}{3}$
13. $x = \frac{1}{2}$ or $x = \frac{5}{2}$
14. $x = -\frac{2}{3}$ or $x = 5$

12
$$y = \frac{1}{2}$$
 or $y = \frac{5}{2}$

12.
$$x = -\frac{4}{3}$$
 or $x = \frac{7}{3}$

13.
$$x = \frac{1}{2}$$
 or $x = \frac{5}{2}$

14.
$$x = -\frac{2}{3}$$
 or $x = 5$

Answers