Slope

Positive Slope

- Rising from left to right

Negatue slope

- falling from left to right

No slope - horizontal / parallel to the $x a \times 15$

Parallel lines
Have the same slope.

$$
k \| \ell
$$

the same slope.

To find the slope when gwen two points

1) Label the points $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$

Perpendicular line at 90° angles to each other

To find the perpendicular slope.

1) Turn the slope upside down
2) Change the sign.
3) Sub values in to
the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Find the slope of $A B$ when $A(3,1)$ and $B(5,3)^{x_{2}} y_{2}$

$$
m=\frac{3-1}{5-3}=\frac{2}{2}=1
$$

$$
\begin{aligned}
& \text { Class work } \rightarrow \text { Friday } \\
& \text { Hanewak } \\
& \qquad \operatorname{Pg} 58 Q 4 \rightarrow 8
\end{aligned}
$$

PROJECT MATHS

Coordinate Geometry The Line

Section 3.4 The slope of a line \qquad

Section 3.4 The slope of a line

The slope of the line $A B$ is defined as
the vertical change horizontal change
or rise

The slope of $A B=\frac{3}{6}=\frac{1}{2}$.

In the diagram on the right, the slope of $A B$ is found by getting the

$$
\frac{\text { vertical change }}{\text { horizontal change }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Thus the slope, m, of $A B$ is $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

The slope, m, of the line passing through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Notes

Positive and negative slopes

As we go from left to right, the slope is positive if the line is rising and the slope is negative is the line is falling.

Parallel lines

The lines a and b in the diagram below both have the slope $\frac{3}{2}$.
These lines are parallel.

Parallel lines have equal slopes

Notes

Perpendicular lines

The given lines a and b are perpendicular.
The slope of a is $\frac{3}{2}$.
The slope of $b=-\frac{2}{3}$.
Notice that one slope is minus the reciprocal of the other.
Notice also that the product of the two slopes is -1 , ie.,

$$
-\frac{2}{3} \times \frac{3}{2}=-1 \quad-\frac{6}{6}=-1
$$

If two lines are perpendicular, the product of their slopes is -1 , ie.,

$$
m_{1} \times m_{2}=-1
$$

$$
\text { Classwork } \begin{aligned}
& \operatorname{Pg} 57 Q_{1} \\
& \operatorname{Pg} 58 Q_{2,3}
\end{aligned}
$$

Example 1

If $A=(3,-1)$ and $B=(5,2)$, find the slope of the line $A B$.

The slope, m, of the line passing through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$(3,-1)$
$\left(x_{1}, y_{1}\right)$
$(5,2)$
$\left(x_{2}, y_{2}\right)$

$$
\begin{array}{r}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
=\frac{2+1}{5-3}=\frac{3}{2}
\end{array} \text { The slopes of } \mathrm{AB}=\frac{3}{2} .
$$

Example 2

$A(-1,0), B(3,2), C(-1,4)$ and $D(2,-2)$ are four points in the plane.
Show that $A B$ is perpendicular to $C D$.

The slope, m, of the line passing through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Let m_{1} be the slope of $A B$ and m_{2} be the slope of $C D$.

$$
\begin{array}{ccc}
\mathrm{A}(-1,0) & \mathrm{B}(3,2) & \mathrm{C}(-1,4) \\
\downarrow & \downarrow & \mathrm{D}(2,-2) \\
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right) & \left(x_{1}, y_{1}\right) \\
m_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \left.m_{2}, y_{2}\right) \\
=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
=\frac{2-0}{3+1} & =\frac{-2-4}{2+1}=\frac{-6}{3} \\
=\frac{2}{4}=\frac{1}{2} & =\frac{-6}{3}=-2
\end{array}
$$

$A B$ is perpendicular to $C D$ as the product of the slopes is -1 .

1. The diagram shows four lines a, b, c and d.
(i) Which lines have positive slopes?
(ii) Which lines have negative slopes? a ande

Exercise 3.4

2. Three lines a, b and c are drawn on the grids below:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

(iii) What is the slope of line c ?
3. Why is the slope of the given line negative? Use the grid to work out the slope of the line

$$
\frac{-5}{10}=\frac{-1}{2}
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

4. Find the slope of the line $A B$ in each of the following $x_{x, y}$

(v) $A(-3,2)$ and $B(-5, \delta)^{2}$
(ii) $\mathrm{A}(-1,2)$ and $\mathrm{B}(3,-4)^{x_{2}}$
(iv) $A(3,0)$ and $B(-1,-4)$
$\frac{-4-2}{3+1}=\frac{-6}{4}=\frac{-}{2}$
iii) $\frac{5+3}{0+1}=\frac{8}{1}=8$
iv) $\frac{-4-0}{-1-3}=\frac{-4}{-4}=1$
v) $\frac{0-2}{-5+3}=\frac{-2}{-2}=1$
vi) $\frac{3-1}{-2+5}=\frac{2}{3}$
5. Show that the line passing through $A\left(\begin{array}{cc}x_{1} & y_{1} \\ \hline\end{array}\binom{x_{2}}{y_{2}}\right.$ and $B(3,0)$ has the same slope as the line passing through $C(2,3)$ and $D(-2,1)$.
What can you say about the lines $A B$ and CD?

$$
A B \frac{0+2}{3+1}=\frac{2}{4}=\frac{1}{2} \quad C D=\frac{1-3}{-2-2}=\frac{-2}{-4}=\frac{1}{2}
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

6. ℓ contains the points $(1,1)$ and $(2,4)$ m contains the points $(4,1)$ and $(3,-2)$. Investigate if ℓ is parallel to m.
$l: \frac{4-1}{2-1}=\frac{3}{1}=3$
$m: \frac{-2-1}{3-4}=\frac{-3}{-1}=3$
3/1/3
$m \| l$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

7. $A(-2,-4), B(5,-1), C(6,4)$ and $D(-1,1)$ are the vertices of a quadrilateral. Draw a rough sketch of the figure. Now verify that $A B \| C D$ and $A D \| B C$.

Exercise 3.4

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

8. The given diagram shows three lines a, b, and c. Match the lines with these slopes:

$$
a=\frac{4}{8}=\frac{1}{2}
$$

$$
b=\frac{4}{4}=1
$$

$$
C=\frac{4}{2}=2
$$

