Take care reading these Questions
Highlight key information
Give a unit in your answer - Area $=$ units $^{2}$ volume $=$ units ${ }^{3}$

Eg 1) A capsule is made up of a cylindrical section and two hemispherical ends.


1) Find the surface area of the capsule in $\mathrm{cm}^{2}$ Gee your answer correct to two significant figure's
2) Find the volume of the capsule in $\mathrm{m}^{3}$ ? Gee your answer correct to two decimal places?

## Solution i

1) Surface Area
raduis $=\frac{\text { Diameter }}{2}$
$\Rightarrow r=\frac{84}{2}=42 \mathrm{~cm}$
The two hemispherical ends make 1 sphere
Surface area of a sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& =4 \times \pi \times 42^{2} \\
& =7056 \pi \text { or } 22167.08
\end{aligned}
$$

Cylindrical section
Surface area of a cylinder $=2 \pi r h$

$$
\begin{aligned}
r=42 \quad h=70 \quad & =2 \pi(42)(170) \\
& =14280 \pi \text { or } 44861.94
\end{aligned}
$$

Total surface area $=$ Cylunder + Sphere .

$$
\begin{aligned}
& =44861.94+22167.08 \\
& =67029.02
\end{aligned}
$$

$$
=67029.02
$$

Ans to Two significant figures $67000 \mathrm{~cm}^{2}$
2) Volume

Volume of sphere + volume of cycender formula $4 / 3 \pi r^{3}+\pi r^{2} h$

$$
\begin{aligned}
& 4 / 3 \times \pi \times 42^{3}+\pi \times 42^{2} \times 170 \\
& \text { or } 98784 \pi+299880 \pi \\
& 310339.09+942100.81 \text { Add together } \\
& =1252439.895 \mathrm{~cm}^{3}
\end{aligned}
$$

Convert to meters $\rightarrow$ divide by $(100)^{3}$

$$
1252439.895 \div(100)^{3}=1.25 \mathrm{~m}^{3}
$$

Q2) A solid is the shape of a hemisphere surmounted by a care.


1) The volume of the hemisphere is $18 \pi \mathrm{~cm}^{3}$ Fund the raduis of the hemisphere
2) The length of the slant of the care is $3 \sqrt{5} \mathrm{~cm}$. Find the vertical height of the cone.
3) Show the volume of the cone is equal to the volume of the hemisphere.
4) This solid is melted down and recast in the shape of a solid cylinder. The height of the aylender is 9 cm .
Fund its radius.

Solution

1) Formula volume of $a$ hemisphere

$$
\begin{aligned}
& V=2 / 3 \pi r^{3} \quad \text { Vol of hemisphere }=18 \pi \\
& \therefore 2 / 3 \pi r^{3}=18 \pi \quad \text { Cancel the } \pi \quad(\div \text { by } \pi) \\
& =2 / 3 r^{3}=18 \quad \text { Divide both sides by } 2 / 3
\end{aligned}
$$

$$
\begin{aligned}
& =2 / 3 r^{3}=18 \\
& =r^{3}=18 \times \frac{3}{2} \\
& =r=\sqrt[3]{27} \\
& r=3 \mathrm{~cm}
\end{aligned}
$$

Divide both sides by $2 / 3$
(invert and multiply)
$3 \sqrt{\text { both sides }}$
2)


Part (1) $r=3$
Find the height
Pythagoras $\quad c^{2}=a^{2}+b^{2}$

$$
\begin{gathered}
(3 \sqrt{5})^{2}=(x)^{2}+(3)^{2} \\
45=x^{2}+9 \\
\left.-9 \left\lvert\, \begin{array}{l}
45 \\
5 \\
36 \\
\sqrt{36}= \\
=x \\
6
\end{array}\right.\right)=x
\end{gathered}
$$

Part 3) We know the hemisphere has a volume of $18 \pi$ we need to the volume of the cone.

$$
\text { Formula }=1 / 3 \pi r^{2} h
$$

$\left.\begin{array}{ll}\text { Part (1) } & r=3 \\ \text { Part (2) } & h=6\end{array}\right\} \begin{aligned} & \text { Sabin } \\ & \text { to formula }\end{aligned} \Rightarrow 1 / 3 \pi(3)^{2}(6)$

$$
=18 \pi \mathrm{~cm}^{3}
$$

The two shapes have the same volume.

Part 4) Vol of cone vol of hemsphice

$$
18 \pi+18 \pi=36 \pi \mathrm{~cm}^{3}
$$

The new cylinder was made fran the original shape it has the same volume $36 \pi \mathrm{~cm}^{3}$

$$
\text { Volume of cylinder }=\pi r^{2} h
$$

Volume of cylenaer $=\pi r^{2} h$

$$
\begin{aligned}
& \begin{array}{l}
h=9 \mathrm{~cm} \\
v o 1=36 \pi \\
r=1
\end{array} \quad \Rightarrow \begin{array}{l}
\text { sub } \\
\text { into }
\end{array} \quad \Rightarrow \pi(r)^{2}(9)=36 \pi \quad \text { cancel } \pi \\
& r=\text { ? } \\
& \text { formula } \\
& r^{2}(a)=36 \quad \div \text { by } 9 \\
& r^{2}=\frac{36}{9} \\
& r\left|\begin{array}{l}
r^{2}=4 \\
r=\sqrt{4}
\end{array}\right| \sqrt{ } \\
& r=2 \mathrm{~cm}
\end{aligned}
$$

Q3) The volume of a cylinder is $15840 \mathrm{~cm}^{3}$ If the height is 35 cm , fund the length of the raduis of its base.

Solution:
Sketch

$$
\begin{aligned}
& \text { vol }=15840 \\
& h=35 \\
& r=?
\end{aligned}
$$



$$
\begin{array}{c|c|c}
35 \pi\left(r^{2}\right)=15840 \\
\sqrt{35 \pi}\left|\begin{array}{c}
35 \pi \\
r^{2}=144 \\
r=\sqrt{144} \\
r=12 \mathrm{~cm}
\end{array}\right| r
\end{array}
$$

Q4) A sphere of radius 4 cm is dropped into a cylinder partly fulled with water. When the sphere is fully submerged the level of the water rises $h \mathrm{~cm}$. If the radius of the cyunder is 8 cm , fund the value of $n$.


Solution:
The volume of the sphere is equal to the shaded cylunder of height $n$.
(The amount the water level wicreased by).
vol of sphere $=$ vol of chunder
formula: $\quad 413 \pi r^{3}=\pi r^{2} h$
$r=4 \quad r=8$ sub values in to formula.

$$
\begin{aligned}
& 4 / 3 \pi(4)^{3}=\pi(8)^{2}(h) \\
& \therefore \pi \mid 4 / 3(64 \pi)=64 \pi h \quad \div \pi \text { To cancel } \pi \\
& \div 64 \quad 4 / 3=h \quad \div 64 \\
& h=4 / 3 \text { or } 1.3 \text { or } 11 / 3 \mathrm{~cm} \text {. }
\end{aligned}
$$

Q5) The diagram shows the model of a rocket shop It's made fran a solid cylunder with a solid cone on top.


1) Calculate the volume of the care in terms of $\pi$
ii) Fund the height of the cylinder if the volume of the cylinder is 4 tunes the volume of the care.
iii) Find the value of $k$, if the volume of the cyundier of height $k$ is half the value of the whole solid model.

Solution

1) Vol of the cone

Formula $1 / 3 \pi r^{2} h$

$$
\begin{aligned}
& r=10 \mathrm{~cm} \quad h=24 \\
& 1 / 3 \pi(10)^{2}(24)=800 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

2) Vol of cylinder $=4(800 \pi)=3200 \pi \mathrm{~cm}^{3}$

$$
\begin{gathered}
\quad \pi r^{2} h \\
\Rightarrow \pi \times 10^{2} \times h=3200 \pi \quad \text { cancel } \pi \\
\div 100|=100 \mathrm{~h}=3200| \div 100 \\
h=32 \mathrm{~cm} \mid
\end{gathered}
$$

3) Volume of whole solid = vol of comet vol of cylinder

$$
800 \pi+3200 \pi
$$

$$
=4000 \pi
$$

volume of cyunder of height $k=1 / 2$ vol of whole solid

$$
\begin{aligned}
& \pi r^{2} k=1 / 2(4000 \pi) \\
& \pi(10)^{2} k=2000 \pi \quad \div \pi \text { to cancel } \\
& \div 100 \left\lvert\, \begin{array}{rr}
100 k & =2000 \\
& =20 \mathrm{~cm} \quad \div 100
\end{array}\right.
\end{aligned}
$$

