Take care reading these Questions

Highlight key information

Give a unit in your answer - Area= units2 Volume=units3

Eg 1) A capsule is made up of a cylindrical section and two hemispherical ends.

- 1) Fund the surface area of the capsule in cm² Gue your answer correct to two significant figures
- 2) find the volume of the capsule in m? Give your answer correct to two decimal places?

Solution

1) Surface Area Diameter radius =
$$\frac{Diameter}{2}$$
 = $\frac{84}{2}$ = 42 cm

The two hemispherical ends make 1 sphere

Surface area of a sphere = 4TTr²

$$= 4 \times 1T \times 42^2$$

Cylindrical section

Surface area of a cylinder = 2TTrh

$$= 2\Pi(42)(70)$$

$$r=42$$
 h=70 = 142 solt or 44861.94

Total surface area = Cylinder + Sphere.

And In King combinal Commie 62000 cm2

Ans to Two significant figures 67000cm²

2) Volume

Volume of sphere + volume of cylinder formula 4/3 17 r3 + TTr2 h

Convert to meters \rightarrow divide by $(100)^3$ 1252439.895 \div $(100)^3 = 1.25 \text{ m}^3$

Q2) A solid is the shape of a hemisphere surmounted by a case.

- 1) The volume of the hemisphere is 18T7cm³ Fund the radius of the hemisphere
- 2) The length of the slant of the care is 355cm. Find the vertical height of the care.
- 3) Show the volume of the care is equal to the volume of the hemisphere.
- 4) Ini solid is melted down and recast in the shape of a solid cylinder. The height of the cylinder is 9cm. Find its radius.

Solution

1) Formula Volume of a hemisphere

$$\frac{2}{3}\pi r^3 = 18\pi$$
 Cancel the π (\div by π)

=
$$2/3$$
 r³ = 18 Divide both sides by $2/3$
= $r^3 = 18 \times \frac{3}{2}$ (invert and multiply)
= $r = \sqrt[3]{27}$
 $r = 3$ cm

Part 3) We know the hemisphere has a volume of 18TT we need to the volume of the care.

Formula = 1/3 TTr2h

Part (1)
$$r=3$$
 } Sub in =) $1/3 \text{ fT } (3)^2(6)$
Part (2) $h=6$ } Sub in $= 1/3 \text{ fT } (3)^2(6)$
= $1/3 \text{ fT } (3)^2(6)$

The two shapes have the same volume.

Part 4) Vol of cone + vol of hemusphere
$$18TT + 18TT = 36TT \text{ cm}^3$$

The new cylinder was made from the original shape it has the same volume 3617cm³

Volume of cylinder = TTr'h

h = 9 cm

$$Vol = 36 TT$$
 =) Sub
 $Vol = 36 TT$ cancel TT
 $T^2 = 36 TT$
 $T^2 = 4 TT$
 $T^2 = 4 TT$
 $T^2 = 4 TT$

Q3) The volume of a cylinder is 15840cm³

If the height is 35cm, find the length of
the radius of its base.

Solution:

Sheton

Q4) A sphere of radius 4cm is chropped into a cylinder partly flued with water. When the sphere is fully submerged the level of the water rises h cm. If the radius of the cylinder is 8cm, find the value of h.

Solution:

The volume of the sphere is equal to the snaded cyunder of height h.

(The amount the water level vicreased by).

Vol of sphere = vol of cylinder

formula:
$$413 \text{ Tir}^3 = \text{Tir}^2 h$$

 $r = 4$ $r = 8$ sub values in to formula.

$$413 \pi (4)^3 = \pi (8)^2 (h)$$

Q5) The diagram shows the model of a rocket shop It's made from a solid aylunder with a solid care on top.

- 1) Calculate the volume of the cone in terms of TT
- ii) Find the height of the cylinder
 if the volume of the cylinder
 is 4 times the volume of
 the care.
- volume of the cycender of height k

 15 half the value of the whole solid
 model.

Solution

1) Vol of the care

Famula $\frac{1}{3} \text{ TT }^2 h$ $r = 10 \text{ cm} \quad h = 24$ $\frac{1}{3} \text{ TT } (10)^2 (24) = 800 \text{ TT cm}^3$

2) Vol of aylander =
$$4(80011) = 3200 \text{ TT cm}^3$$

The state of the

3) Volume of whole solid= vol of come + vol of cylinder 800T + 3200TT

= 4000TT

Volume of cylinder of height le = 1/2 val of whole solid

$$\pi r^2 k = 1/2 (4000 \pi)$$

$$TT(10)^{2}k = 2000TT = TT + 0 cancel$$

$$|00h = 2000$$

 $|-100|$ $|k = 20cm$