The patterns are made of matchsticks

$$\sqrt{2}$$

Draw the next two terms in the pattern

T4

Ts

Copy and complete the table

Pattern Number	Number of matchshcks			
1	3			
2	5			
3	7			
4	9			
5	П			

Fund the non term rule for the number of matchsticks

d=common difference d=2

①
$$a = 3$$

(2)
$$d = 2$$

$$9 7n = 3 + (n-1)2$$

 $3 + 2n = 2$

- Q1) Find the number of matchsticks in the 21st pattern
- Qz) Which pattern contains 73 materisticus?

Solutions In= 2n+1
Q1

$$-1$$
 $2n = 72$ -1

PROJECT MATHS

10 Patterns and Sequences

Section 10.3 Sequences from shapes -

Exercise 10.3

1. A pattern of triangles is built up from matchsticks.

- (ii) Write down the sequence of numbers generated by the matchsticks in the
- (iii) Find an expression in n for the number of matches in the nth set of triangles.
- (iv) How many matches are needed for the 50th set of triangles?

Exercise 10.3

2. Here is a pattern sequence

21 sticks

- (i) Draw the 4th pattern in this sequence. 6,11,16,21,38,31
 (ii) Write down the sequence of numbers generated by the sticks in the first six patterns.
- (iii) Show that the number of sticks in the nth pattern is given by $T_n 5n + 1$. (iv) How many sticks are required for the 20th pattern? (v) For which pattern are 51 sticks required?

Exercise 10.3

3. Complete the table of values for this sequence of matchstick patterns.

Number of squares 1 2 3 4 5 6
Number of matchsticks 4 7 10 13 16 19

(i) How many matchsticks are required for the 6th pattern?

- (ii) Find an expression in *n* for the *n*th_pattern.
- (iii) Use the expression found to find the number of matchsticks required for the 50th pattern.

ii) nth term

4+30-3 Tn=3n+1

Tso= 3(50)+1

Exercise 10.3

4. A pattern of squares is built up from matchsticks as shown.

- (i) Draw the 4th pattern.
- 4n= 10 | +3 n=20 | +4 (ii) Find an expression in n for the number of squares in the nth pattern. 74
- (iii) How many squares are there in the 30th pattern? (iv) Which pattern contains exactly 77 squares?

iii n=30

ii) nth term rule

T30=4(30)-3 120-3

Exercise 10.3

5. Look at these matchstick shapes.

5 matchsticks

(i) Copy and complete the table below:

Shape number	1	2	3	4	5
Number of matchsticks	5	9			

- (ii) How many matchsticks are there in Shape 7?
- (iii) Find an expression for the number of matchsticks in Shape n.
- (iv) Which shape contains exactly 101 matchsticks?

Exercise 10.3

- **6.** (i) Find the eighth term of the sequence whose nth term is 4n-1.
 - (ii) Find the nth term of the sequence whose first four terms are

2 8 14 20

- 7. Each of these patterns uses black tiles.
 - (i) How many black tiles will be in pattern 5?
 - (ii) How many black tiles will be in pattern 10?

- (iii) Find an expression for the number of black tiles in pattern n.
- (iv) How many tiles will be in pattern 100?
- (v) Which pattern will have exactly 101 tiles?

Exercise 10.3

8. A conference centre had tables each of which could sit six people. When put together, the tables could seat people as shown.

- (i) How many people could be seated at 4 tables?
- (ii) How many people could be seated at n tables put together in this way?
- (iii) A conference had 90 people who wished to use the tables in this way. How many tables would they need?

Exercise 10.3

 $\textbf{9.} \ \ \text{Regular pentagons of side length 1 cm are joined together to make a pattern}$ as shown.

- (i) Write down the perimeter of each of the first 4 shapes. (Do not include internal lines.)
- (ii) What is the perimeter of the 5th and 6th shapes?(iii) Find an expression for the perimeter of the *n*th shape.
- (iv) Find the length of the perimeter of the 50th shape.
- (v) Which shape has a perimeter of length 92 cm?

