Mid point
05 March $2019 \quad$ 13:59

Method

1) Label points

Formula log tables Pg 18

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)
$$

2) Sub in to formula
3) Answer (x, y)

Eg 1) Fund the midpoint of the line segment joining the points $\binom{x_{1}, y_{1}}{2,4}$ and $\binom{x_{2} y_{2}}{6,2}$

$$
\begin{aligned}
\text { Mid point }= & \left(\frac{2+6}{2}, \frac{4+2}{2}\right) \\
& \left(\frac{8}{2}, \frac{6}{2}\right)=(4,3)
\end{aligned}
$$

Q $1(i i)-(v i)$

PROJECT MATHS
Teal
Leaving Certificate

Coordinate Geometry The Line

Section 3.3 The midpoint of a line segment

\qquad

Notes

Section 3.3 The midpoint of a line segment

Here is a line segment $[A B]$.
The coordinates of A are $(1,1)$
The coordinates of B are $(7,5)$.
M is the midpoint of the line segment $[A B]$.
The coordinates of M are $(4,3)$

These coordinates are found as follows:

1. Add the x-coordinates of A and B and divide by 2 , i.e. $\frac{1+7}{2}=4$.
2. Add the y-coordinates of A and B and divide by 2 , i.e. $\frac{1+5}{2}=3$.

The midpoint of the line segment joining $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ is

$$
\left(\frac{x_{1}+x_{2}}{2}, \quad \frac{y_{1}+y_{2}}{2}\right)
$$

Example 1

Find the midpoint of the line segment joining $A(-1,3)$ and $B(5,7)$.

The midpoint of the line segment joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
\left(\frac{x_{1}+x_{2}}{2}, \quad \frac{y_{1}+y_{2}}{2}\right)
$$

$$
\begin{array}{cc}
(-1,3) & (5,7) \\
\downarrow & \downarrow \\
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right)
\end{array}
$$

$$
\begin{aligned}
\text { Midpoint of }[\mathrm{AB}] & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{-1+5}{2}, \frac{3+7}{2}\right) \\
& =\left(\frac{4}{2}, \frac{10}{2}\right)=(2,5)
\end{aligned}
$$

1. Find the midpoint of the line segment joining these points:
(i) $(2,4)$ and $(6,2)$
(iv) $(-2,4)$ and $(4,-2)$
(ii) $(2,4)$ and $(0,2)$
(iv) $(-2,4)$ and $\left(4^{2}-2\right)^{2}$
(ii) $(2,4)$ and $(0,2)$ yes
(v) $(2,-3)$ and $(0,-1)$
(iii) $(2,-1)$ and $(4,3)$
11) $\left(\frac{2+0}{2}, \frac{4+2}{2}\right)$
iii) $\left(\frac{2+4}{2}, \frac{-1+3}{2}\right)$
(vi) $(-3,4)$ and $(-1,-4)$.
$(3,1)$
iv) $\left(\frac{-2+4}{2}, \frac{4-2}{2}\right)$
$=(1,3)$
$(1,1)$
v) $\left(\frac{2+0}{2}, \frac{-3-1}{2}\right)$
$(1,-2)$
vi) $\left(\frac{-3-1}{2}, \frac{-4+4}{2}\right)$ $(-2,0)$
2. Find the midpoint of the line segment joining $(-3,4)$ and $(3,7)$. On which axis does the midpoint lie?
3. The points $(-2,3)$ and $(6,5)$ are the end points of the diameter of a circle. Find the coordinates of the centre of the circle

$\left(\frac{-2+6}{2}, \frac{3+5}{2}\right)$
$(2,4)$
4. $A(4,3), B(1,-3), C(-2,-2)$ and $D(1,4)$ are the vertices of a parallelogram Draw a sketch of this parallelogram.
Find the midpoint of [AC].
Verify that the midpoint of $[A C]$ is also the midpoint of $[B D]$.
5. Find M, the midpoint of the line segment joining $A(-3,4)$ and $B(1,-6)$. Now show that $|A M|=|M B|$.
6. $A(5,2)$, and $B\left(x_{1}, y_{1}\right)$ are two points.

If $M(2,4)$ is the midpoint of $[A B]$, find the coordinates of B.

1. (i) $(4,3)$
(ii) $(1,3)$
(iii) $(3,1)$
(iv) $(1,1)$
(v) $(1,-2)$
(vi) $(-2,0)$
2. $\left(0, \frac{11}{2}\right) ; y$-axis
3. $(2,4)$
4. $\left(1, \frac{1}{2}\right)$
5. $(-1,-1)$
6. $(-1,6)$
