(1)
 Coordinate Geometry -
 The Line

Section 11.1 Revision of formulae

Points in the plane (x, y)

204

Plane

To find a point go out \longleftrightarrow on the x axis (nevizontal)
Then go up or down on the y axis \downarrow vertical (x, y)
Note:
(1) All along the x axis $y=0$ Anypoint ($x, 0$)
(2) All along the maxis $x=0$ Anypoint $(0, y)$
$A\left(\begin{array}{l}x_{1} y_{1} \\ 1\end{array}, 2\right)$ and $B\left(\begin{array}{ll}x_{2} & y_{2} \\ 4 & 5\end{array}\right)$
$|A B|=\mid$ Length \mid or \mid Distance \mid
Formula $\mathrm{pg} 18 \log$ tables
$|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Method
(1) Label the two points $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$
(2) Sub the values into the formula.

$$
\sqrt{(4-1)^{2}+(5-2)^{2}}
$$

$=\sqrt{(3)^{2}+(3)^{2}}$

$$
\begin{array}{rlr}
\sqrt{9+9} & =\sqrt{18} \quad \text { surd form } \\
& =3 \sqrt{2} & {[\text { SD] }} \\
& =4.2 & \text { Id.p }
\end{array}
$$

HeW
pg 206 Q5

$$
\begin{array}{r}
\sqrt{18}=\sqrt{9 \times 2} \\
3 \sqrt{2}
\end{array}
$$

Example 1

If $A(-1,3)$ and $B(5,7)$ are two points in the plane, find
(i) $|A B|$
(ii) the midpoint of $[A B]$.

Exercise 11.1

1. Write down the coordinates of each of the points marked in the coordinated plane on the right:
$A=(2,3)$
$B=(4,2)$
$C=(2,1)$
$D=(-3,3)$
$\epsilon=(-2,2)$
$F=(-4,1)$

$G=(-3,0)$
$k=(2,-3)$
$L=(3,-2)$
$H=(-4,-2)$
$M=(s,-3)$
$i=(-2,-3)$
$j=(0,-3)$
2. Draw a coordinated plane from -5 to 5 on the x-axis and from -4 to 4 on the y-axis. Now plot each of the following points:
(i) $\mathrm{A}(3,4)$
(ii) $\mathrm{B}(-1,3)$
(iii) $C(4,-3)$
(iv) $D(-4,-3)$ (v) $E(1,-3)$
3. The four quadrants are shown on the right. In which quadrant does each of the following points lie?
(i) $(3,5) 15 T$
(ii) $(-2,-3) 3 \mathrm{rd}$
(iii) $(1,-4) 4^{\text {th }}$
(iv) $(-3,1) 2$ no
(v) $(3,-3) 4^{\text {th }}$
(vi) $(-1,-3) \cdot 3^{\text {r }} d$

4. On which axis does each of the following points lie?
(i) $(4,0)$
(ii) $(-3,0)$
(iii) $(0,4)$
y
(iv) $(0,-3)$
y
(v) $(0,0)$.
origin
xaxis
5. The points A, B, C and D are shown.
Find (i) $|A B|\binom{x_{1}, y_{1}}{3,5}\binom{x_{2} y_{z}}{8,2}$

$C|=|B C| ?$
1) $\sqrt{(8-3)^{2}+(2-5)^{2}}$
$\sqrt{(5)^{2}+(-3)^{2}}$ $\sqrt{25+9}$ $\sqrt{34}$
iII) $\sqrt{(-4-3)^{2}+(3-5)^{2}}$
$\sqrt{(-7)^{2}+(-2)^{2}}$
$\sqrt{49+4} \sqrt{53}$

ii) $\sqrt{(2-3)^{2}+(-2-5)^{2}}$ $\sqrt{(-1)^{2}+(-7)^{2}}$
$\sqrt{+1+49}$ ($\sqrt{50} \frac{\sqrt{2 \times 25}}{5 \sqrt{2}}$

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

6. Find the distance between each of the following pairs of points: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{0}\right)^{2}}$
(i) $\left.\begin{array}{c}x / y \prime \\ (2,1)\end{array}\right)$ and $(3,4)$
(ii) $\begin{gathered}x_{1} y_{1} \quad x_{2} \quad y^{2} \\ (1,5) \text { and }(2,3)\end{gathered}$

$\frac{\sqrt{(3-2)^{2}+(4-1)^{2}}}{\sqrt{(1)^{2}+(3)^{2}}}$
$\sqrt{1+9}$ $=\sqrt{10}$

$\sqrt{(2-(-1))^{2}+(6-4)^{2}}$
$\sqrt{(1)^{2}+(3)^{2}}$
$\sqrt{1+9}$
$=\sqrt{10}$
$3 \cdot 2$
 $\sqrt{(-5-3)^{2}+(3+2)}$

$\sqrt{64+25}=\sqrt{84}$

(vi) $\begin{gathered}x_{1}, y_{1} \\ 4,-2) \text { and }(0,-5) \\ \sqrt{x_{2}} y_{2} y_{2}^{2} \\ (0-4)^{2}+(-5+2)^{2}\end{gathered}$ $\sqrt{(-4)^{2}+(-3)^{2}}$

$$
\frac{\sqrt{16+9}}{\sqrt{25}}=5
$$

7. $A(1,1), B(3,6)$ and $C(5,1)$ are the vertices of a triangle. Show that $|A B|=|B C|$.

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$|A B|$
$A\left(\begin{array}{l}\left.x, y_{1}\right)\end{array} \quad B\left(\begin{array}{l}x, 2,6) \\ 3,6\end{array}\right.\right.$
$\sqrt{29}$

$|B C|$
 $B(3,6) C\binom{x_{2}, 1}{1}$

$\sqrt{(5-3)^{2}+(1-6)^{2}}$
$\sqrt{(2)^{2}+(-5)^{2}}$

$$
\sqrt{4+25} \quad|A B|=|B C|
$$

$$
\sqrt{29}
$$

$$
\sqrt{29}=\sqrt{29}
$$

$$
\begin{aligned}
& \begin{array}{c}
(4-(-3))^{2}+(3-1)^{2} \\
+3
\end{array} \\
& \sqrt{(7)^{2}+(2)^{2}}
\end{aligned}
$$

9. The points $A(2,1), B(6,1), C(5,-2)$ and $D(1,-2)$ are the vertices of a parallelogram.

Plot the parallelogram on a coordinated plane.
Find (i) $|A C|$ (ii) $|B D|$.
Are the diagonals equal in length?
10. The given diagram shows the points D, E and F.

(i) Write down the lengths of [FE] and [ED].
(ii) Find $|\mathrm{DF}|$.
U.70 $=3 \sqrt{5}$

Use the Theorem of Pythagoras to show that the triangle DEF is right-angled.
 2ogtables pg 18

$$
\left(\frac{x_{1} x_{2}}{2} \cdot \frac{y_{1}+y_{2}}{2}\right)
$$

(1) Label the ports $(x, y$, and $\left(x_{2}, y_{2}\right)$
(2) Sub values into the formula
(3) Answer in a point (x.y)
11. Find the midpoint of the line segment joining these points:
(i) $(2,4)$ and $(6,2)$

Formula $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{0}+y_{2}}{2}\right)$
(ii) $(2,4)$ and $(0,2)^{x_{2}}$

$$
\left(\frac{2+0}{2}, \frac{4+2}{2}\right)
$$

(iii) $\left.\quad \begin{array}{ll}x_{1} & 41 \\ (2,-1)\end{array}\right)$ and $(4,3)^{x_{2}}$
sub into formula

$$
\left(\frac{2+6}{2}, \frac{4+2}{2}\right) \text { Tidy }_{\text {up. }}
$$

$$
\left(\frac{2}{2}, \frac{6}{2}\right)
$$

$\left(\frac{8}{2}, \frac{6}{2}\right)$ $(1,3)$
(4, 3) midpoint
(iv) $\begin{gathered}x_{1} y_{1} \\ (-2,4)\end{gathered} \quad$ and $(4,-2)$

$$
\text { (v) } \begin{array}{cc}
\mathbf{x}_{1} & y_{1} \\
(2,-3)
\end{array} \quad \text { and }\left(\begin{array}{c}
\boldsymbol{x}_{\mathbf{2}} \\
(0, \\
\mathbf{y}_{\mathbf{2}}
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\frac{-2+4}{2}, \frac{4-2}{2}\right) \\
& \left(\frac{2}{2}, \frac{2}{2}\right) \\
& =(1,1)
\end{aligned}
$$

$$
\left(\frac{2+0}{2}, \frac{-3-1}{2}\right)
$$ $\left(\frac{-3-1}{2}, \frac{4-4}{2}\right)$

$$
\left(\frac{2}{2}, \frac{-4}{2}\right)
$$

$$
\left(\frac{-4}{2}, \frac{0}{2}\right)
$$

$$
=(1,-2)
$$

$$
=(-2,0)
$$

Mid point
Log tables Pg 18 coordinate Geometry.
(Point) (x, y)
Formula $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Mid point - middle

Method for midpoint

1) write out the facula
2) Label the points $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{z}\right)$

Tue 17-9-19
Clwpg 206 Q\| (ii) \rightarrow (vi)
12. Find the midpoint of the line segment joining $\begin{array}{cc}x_{1} & y_{1} \\ -3, & 4)\end{array}$ and $\left.\begin{array}{l}x_{2} \\ (3, y) \\ (3,\end{array}\right)$.

On which axis does the midpoint lie?

13. The points $\binom{x_{1} y_{1}}{-2,3}$ and $\begin{gathered}x_{2} y_{2} \\ (6,5)\end{gathered}$ are the end points of the diameter of a circle. Find the coordinates of the centre of the circle.

$x_{1} y_{1} \stackrel{x_{1}}{y_{1}} \quad x_{2} \quad y_{2} \quad$| x_{2} |
| :---: |
| y_{2} |
| 14. |$(4,3), \mathrm{B}(1,-3), C(-2,-2)$ and $D(1,4)$ are the vertices of a parallelogram. Draw a sketch of this parallelogram.

Find the midpoint of [AC].
Verify that the midpoint of $[A C]$ is also the midpoint of [BD].

$$
\begin{aligned}
\left(\frac{x_{1}+x_{2}}{2} \cdot \frac{y_{1}+y_{2}}{2}\right) \Rightarrow & \left.\left(\frac{4-2}{2}, \frac{3-2}{2}\right) \quad \begin{array}{c}
B D= \\
\left(\frac{1+1}{2}, \frac{-3+4}{2}\right) \\
\\
\left(\frac{2}{2}, \frac{1}{2}\right) \\
\\
(1, \cdot 5) \Leftrightarrow\left(\frac{2}{2}, \frac{1}{2}\right)
\end{array}\right)(1, \cdot 5)
\end{aligned}
$$

15. Find M, the midpoint of the line segment joining $A(-3,4)$ and $B(1,-6)$.

Now show that $|A M|=|M B|$.
16. The given diagram shows the points $A(1,2), M(3,5)$ and B. If M is the midpoint of $[A B]$, find by inspection the coordinates of
 the point B .
17. $A(5,2)$, and $B\left(x_{1}, y_{1}\right)$ are two points.

If $M(2,4)$ is the midpoint of $[A B]$, find the coordinates of B.

Answers

Exercise 11.1

1. $\mathrm{A}(2,3), \mathrm{B}(4,2), \mathrm{C}(2,1), \mathrm{D}(-3,3), \mathrm{E}(-2,2)$,
$F(-4,1), G(-3,0), H(-4,-2), I(-2,-3)$,
$J(0,-3), K(2,-3), L(3,-2), M(5,-3)$
2. (i) First (ii) Third (iv) Second (v) Fourth (vi) Third
3. (i) x-axis $\begin{array}{lll}\text { (ii) } x \text {-axis } & \text { (iii) } y \text {-axis }\end{array}$ (iv) y-axis (v) both
4. $\begin{array}{lll}\text { (i) } \sqrt{34} & \text { (ii) } \sqrt{50} & \text { (iii) } \sqrt{53} \text {; No }\end{array}$
5. (i) $\sqrt{10}$
(ii) $\sqrt{50}$
(iii) $\sqrt{13}$; No
(iv) $\sqrt{89}$
(v) $\sqrt{53}$
(iii) $\sqrt{13}$
(vi) 5
6. $\sqrt{53}$
$\begin{array}{ll}\text { 9. (i) } \sqrt{18} & \text { (ii) } \sqrt{34} \text {; No }\end{array}$
7. (i) $|\mathrm{FE}|=6,|\mathrm{ED}|=3$ (ii) $\sqrt{45}$
8. $\begin{array}{lll}\text { (i) }(4,3) & \text { (ii) }(1,3) & \text { (iii) }(3,1\end{array}$ $\begin{array}{lll}\text { (iv) }(1,1) & \text { (v) }(1,-2) & \text { (vi) }(-2,0)\end{array}$
9. $\left(0, \frac{11}{2}\right) ; y$-axis
10. $(2,4)$
11. $\left(1, \frac{1}{2}\right)$
12. $(-1,-1)$
13. $(5,8)$
14. $(-1,6)$
