$\underset{\substack{\text { Inequalities } \\ 23}}{\ln \text { crampons }} \quad$ Tog Tables - Sets and Logic Pg 23
number systems Revision
(1) Natural numbers $\mathbb{N}=\{1,2,3,4,5, \ldots\}$
number lune

"use dots"
(g) $x>3$
$3<x$

(2) Integers $\mathbb{Z}=\{\ldots-4,-3,-2,-1,0,1,2,3, \ldots\}$ positive and negative whole numbers
number lune
"use dots"

(3) The real numbers $\mathbb{R} \rightarrow$ All numbers fracharis decimals, whole numbers.
number lune

Eg 3) Snow on a numberlue $-2 \angle x \leqslant 3, x \in R$

Solving inequalities
Eg 1 Solve the inequality and graph on a number lune.

$$
3 x-2 \leq 7, x \in N
$$

$$
\begin{array}{r|r|rl}
+2 & 3 x \leq 9 & +2 & \div \\
-3 & x \leq 3 & \div 3 & x=\{1,2,3\}
\end{array}
$$

Eg2) 3-2 $(4-x) \geq 3 x, x \in \mathbb{R}$. Solve for x and graph on a number line

$$
\begin{gathered}
3-8+2 x \geq 3 x \\
-5+2 x \geq 3 x \\
-2 x\left|\begin{array}{l}
-5 \geq 1 x
\end{array}\right|-2 x
\end{gathered}
$$

Classwork Pg 13 Q4 ts
Negative inequalities
method (1) Get rid of the minis on the x by multiplying across the inequality by -1
(2) The direction of the equality sign changes.

$$
\begin{aligned}
& \operatorname{Eg} 1)(-1)^{\text {multiply }} 7-x>4, \quad x \in Z \\
& -7+x<-4 \\
& +7|x<3 \quad|+7
\end{aligned}
$$

PROJEGT MATHS
 Text S Tesis Leaving Certificate

Algebra 1

Section 1.7 Linear inequalities \qquad

Notes
$2 x+4=6$ is an example of an equation because both sides are equal. However $2 x+4>6$ is an inequality as both sides are not equal.
The four inequality symbols are as follows

1. $>\ldots$ is greater than
2. \geqslant is greater than or equal to
3. $<\ldots$ is less than
4. \leqslant is less than or equal to

Notes

The rules for solving inequalities are very similar to those for solving equations. There is, however, one important difference.

The inequality sign is reversed when both sides are multiplied or divided by the same negative number.

$$
\begin{aligned}
& \text { ed by the same negative number. } \quad(-3<-5) \text { not true. } \\
& 3<5 \text { but } 3 \times(-1)>5 \times(-1) \quad(-3)
\end{aligned}
$$

negative inequalities $-3>-5$
When you have a minus x part, you need to make this posture
multiply across All of the inequality by -1
The direction of the equality sign changes diredion
$\angle x(-1)=>$
$>x(-1)=\angle$

Notes

Before solving inequalities, we will revisit the different types of number and how they are represented on the number line.

1. The set of natural numbers, $\mathbf{N}=\{1,2,3,4, \ldots\}$

2. The set of integers, $\mathbf{Z}=\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$
3. The set of real numbers \mathbf{R} contains all the numbers on the number line. R is represented on the number line by a bold line which indicates that all the numbers are included.

$$
\mathrm{R}
$$

$$
R \leftarrow
$$

Here are two sets of real numbers represented on the number line.

The full circle at 4 indicates that 4 is included
The empty circle at -2 indicates that -2 is not included.

Example 1

Solve the inequality $5-2 x<9, x \in Z$ and illustrate the solution on the number line.

Example 2

Find the solution set A of $3 x+1 \leqslant 2 x+5, x<R$.
Find the solution set B of $\frac{1}{3}-2 x \leqslant \frac{25}{3}, x<R$.
Find $A \cap B$ and illustrate your answer on the number line.

1. Match up these inequalities.

Answer: $\quad \mathrm{D}$ and E
2. Which two of the following are equivalent to $m>6$?

3. Find the four equivalent pairs in these eight inequalities.
A $p \leqslant 8$

Exercise 1.7
Answer: $\quad x \leqslant 3$

Solve the following inequalities and graph the solution set on the number line:
4. $3 x-2 \leqslant 7, x \in N$

$\stackrel{H 1 H 1 H|H 1 H 1 H 1 H|}{H}$

Solve the following inequalities and graph the solution set on the number line:
5. $8 x-1<5 x-10, x \in Z$

Solve the following inequalities and graph the solution set on the number line
6. $3 \times 11 \approx 2 \times 15, x \in Z$ Dots

$-1 |$| $-2 x$ | $\mid x+1 \leqslant 5$ | $-2 x$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $x \leqslant 4$ | -1 | | | |
| | $\leftarrow-3$ | -2 | -1 | 0 | 2 |

Solve the following inequalities and graph the solution set on the number line:
7. $7-x>4, x \in Z \quad(-1)$ mulliply $\quad>\Rightarrow L$
$-7+x<-4 \quad$ change
$+7|x<3|^{+7}$ direction

Solve the following inequalities and graph the solution set on the number line:
8. $2 x-5 \geq 3 x-2, \quad x \in R$

$-2 x$	$-5 \geq x-2 x$	$-2 x$	$-3 x$	$-x-5 \geq-2$
+2	$-3 \geq x$	+2	+5	$-x \geq+3$
		(-1)	$x \leq-3$	(-1)

R-river

Solve the following inequalities and graph the solution set on the number line:
9. $4(x+2)<3 x-4, x \in R$

$\stackrel{H 1 H H 1 H 1 H 1 H 1 H 1 H}{ }$

Solve the following inequalities and graph the solution set on the number line:
10. $1 \leqslant 3 x-11, x \in Z$

Solve the following inequalities and graph the solution set on the number line:
11. $7-4 x \geqslant 2 x+1, x \in R$

Solve the following inequalities and graph the solution set on the number line:
12. $3-2(4-x) \geqslant 3 x, \quad x \in R$

Exercise 1.7
Answer: $\quad x \leqslant-8$

Solve the following inequalities and graph the solution set on the number line:
13. $3 x \leqslant-2(4-x), x \in R$

$\leftrightarrow+1+1 H 1+1+1+1+1+$

Solve the following inequalities and graph the solution set on the number line:
14. $x-4 \leqslant 4 x-1, x \in R$

Solve the following inequalities and graph the solution set on the number line:
15. $4-2 x>5(2-x), x \in R$
16. Solve the inequality $5(2 x-5) \geqslant 1-2(11-3 x), \quad x \in R$. Now illustrate your solution on the number line.
17. Find the solution set K of $11 \geqslant 3 x+2, \quad x \in R$.

Find the solution set L of $3 x+2>-7, \quad x \in R$.
Find $K \cap L$ and graph the solution on the number line.
18. Find the solution set P of $2-3 x \leqslant 4+x, x \in R$.

Find the solution set Q of $4+x \leqslant 7, \quad x \in R$.
Find $P \cap Q$ and graph the solution on the number line.
19. Find the solution set A of $x<3 x-1, \quad x \in R$.

Find the solution set B of $3 x-1 \leqslant 2 x+7, \quad x \in R$.
Now illustrate $A \cap B$ on the number line.

$\stackrel{H 1 H 1 H|H 1 H 1 H 1 H|}{H}$

20. Find the solution set C of $2 \leqslant \frac{5 x-6}{2}, x \in N$.

Find the solution set D of $\frac{5 x-6}{2} \leqslant 7, x \in N$.
Illustrate $C \cap D$ on the number line.
21. A bus can carry a maximum of 44 passengers.

A school wants to take 5 adults and as many groups of 4 children as possible on the bus.
(i) Given that n represents the number of children, which of these inequalities is true for the bus
(a) $4 n+5 \geqslant 44$
(b) $4 n+5 \leqslant 44$
(c) $4 n-5<44$
(d) $4 n+5>44$?
(ii) Solve the inequality to find the maximum number of groups of 4 children the bus can carry.

