Laws of Indices
Indic
a^{b}
Base
value
$=a^{m+n}$

$$
a^{m} \times a^{n}=a^{m+n}
$$

(2) Division

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

Subtract the bottom power fran the top power
(3) $\left(a^{m}\right)^{n}=a^{m n}$ multiply the powers
(4) $a^{0}=1$
(5) Fracticial undices

Roots \rightarrow Powers

$$
\begin{aligned}
\sqrt{ } & =1 / 2 \\
\sqrt[3]{ } & =1 / 3 \\
\sqrt[4]{ } & =1 / 4
\end{aligned}
$$

Equations with indices
Method:

1) You must write all the numbers in the equation as the same base value ie 2, 3, 5,7
2) Use rules of indices to tidy up the equation
3) Cancel the base values and solve to fund the value of x

Eg) Solve for x

$$
\begin{aligned}
2^{x} & =8 \\
2^{x} & =\left(2^{4}\right)
\end{aligned}
$$

$$
\begin{gathered}
2 x=\left(2^{3}\right) \\
x=3
\end{gathered}
$$

$$
2^{3}=8
$$

Eg2) Solve for x
$\operatorname{Eg} 3) \quad 2^{x}=\frac{1}{4}$

$$
2^{x}=\frac{1}{2^{2}}
$$

$$
\begin{aligned}
& \mathrm{Clw} \rightarrow \text { Hllw } \\
& \mathrm{Pg} 41 \\
& Q 4,8,12,16,20
\end{aligned}
$$

$$
\begin{aligned}
2^{x} & =2^{-2} \\
x & =-2
\end{aligned}
$$

$$
\begin{aligned}
& 25^{x}=125 \\
& \left(5^{2}\right)^{x}=\left(5^{3}\right) \\
& 5^{2 x}=S^{3} \\
& \div 2\left|\begin{array}{l}
2 x=3 \\
x=3 / 2
\end{array}\right| \div 2
\end{aligned}
$$

Algebra 2: Quadratic Equations

Section 2.8 Equations involving indices

Exercise 2.8

1. Express each of the following in the form 2^{k}, where k is an integer:
(i) 8
(ii) 16
(iii) $\frac{1}{4}$
(iv) $\frac{1}{8}$
(v) $\frac{1}{32}$
