25 September 2019 12:

Find the equation of line.

// parallel same slope

$$\perp$$
 perpendicular $\frac{a}{b} \perp -\frac{b}{a}$

$$\frac{a}{b} \times \frac{-b}{a} = \frac{-ab}{ab} = -1$$

Eg1) Find the slope of the line 2x+y-4=0

Hence find the equation of the line through
the point (2,4) which is parallel to the given line.

When given the equation of the line
use the y=mx+c to find the slope.

$$2x+y-4=0-2x | y-4=-2x | -2x+4 | y=-2x+4 | +4y=mx+c$$

Slope = -2

Equation of line
$$y-y=m(x-x)$$
 $y-4=-2(x-2)$
 $y-4=-2x+4$
 $+2x \mid 2x+y-4=t4 \mid txx$
 $-4 \mid 2x+y-8=0$

Ans = $2x+y-8=0$

C/W Pg 219 Qz +Q5

Section 11.5 Parallel and perpendicular lines

Example 1

Find the equation of the line through the point (-2, 3) which is perpendicular to the line 2x - y + 5 = 0.

Exercise 11.5

1. Find the slope of the line 2x + y - 4 = 0. Now find the equation of the line through the point (2, 4) and which is parallel to the line 2x + y - 4 = 0.

2. Find the equation of the line through the point (1, -6) and which is parallel to the line 3x - y + 4 = 0.

Slope =
$$y=mx+C$$
 $m=3$ slope
 $3x-y+4=0$ $y-y_1=m(x-x_1)$
 $y-(-6)=3(x-1)$
 $y+6=3x-3$
 $-y+6=3x-3$
 $-y+6=3x-9-9$
 $3x-y-9=0$

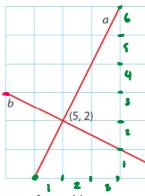
Perpendicular Slopes funding the equation of the Line

3. Find the slope of the line 2x - 3y + 1 = 0. What is the slope of any line perpendicular to 2x - 3y + 1 = 0? Now find the equation of the line through the point (4, -1) and which is perpendicular to the line 2x - 3y + 1 = 0

to the line
$$2x - 3y + 1 = 0$$
.
Step 1: Find the slope

 $y = mx + c$
 $2x - 3y + 1 = 0$
 $3x - 3y + 1 = 0$

4. Find the equation of the line through (-2, 1) and which is perpendicular to the line 3x + 2y - 4 = 0.


$$y=mx+C$$
 $3x+2y-4=0$
 $-3x$
 $| +2y-4=-3x |$
 $+4$
 $| 2y=-3x+4 |$
 $| +2y-4=-3x |$
 $| +4$
 $| -2y=-3x+4 |$
 $| +4$
 $| -2y=-3x+4 |$
 $| +4$
 $| -3y=-3x+4 |$
 $| -3y=-3$

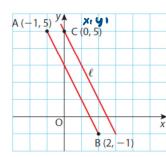
5. Find the equation of the line through (-4, 0) and which is parallel to the line y = 3x - 5.

$$y=m\times+c$$
 $y=3x-5$
 $y-y=m(x-x_1)_1$
 $y=0=3(m)$
 $y=0=3(x+4)$
 $y=3x+12$
 $y=m\times+c$
 $y=3x-4$
 $y=3x+12$
 $y=3x+12$

6. The given diagram shows the lines a and b intersecting at the point (5, 2).

$$A = \frac{6}{3} - \frac{2}{1} = 2$$

$$\frac{11}{-\frac{1}{2}} \times \frac{2}{1} = \frac{-2}{2} = -1$$


- (i) Use the grid to find the slopes of a and b.
- (ii) Investigate if a and b are perpendicular to each other.
- (iii) Find the equation of the line q.

$$y-y_1=m(x-x_1)$$

 $y-2=2(x-5)$
 $y-2=2x-10$
 $+2/y=2x-8/+2$
 $-y/0=2x-y-8/-y$

7. The given diagram shows the points A(-1, 5), B(2, -1)and C(0, 5).

The line ℓ is parallel to AB and contains the point C.

Find the equation of ℓ .

Slope [AB]
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 5}{2 - (-1)} = \frac{-6}{3} = \frac{m}{2}$$

Equation of
$$\ell$$

 $y-y=m(x-x1)$ $m=-z$ $((6,5)$
 $y-5=-2(x-0)$

8. Which one of the following lines is parallel to
$$3x + y - 4 = 0$$
?

A:
$$y = 3x - 2$$

B:
$$y = \frac{1}{3}x + 4$$

B:
$$y = \frac{1}{3}x + 4$$
 C: $6x + 2y + 7 = 0$

D:
$$x + 3y + 2 = 0$$

The midpoint of [AB] is P.

Find the coordinates of P.

Now find the equation of the line which passes through P and which is perpendicular

mid point
$$\left(\frac{x+5y-7=0}{2}, \frac{y+ye}{2}\right)$$
 $\left(\frac{1+3}{2}, \frac{7+1}{2}\right) = \left(\frac{4}{2}, \frac{8}{2}\right) = \left(2,4\right)$

$$\frac{-1}{5} \perp \frac{5}{1} = \frac{m}{5}$$

Equ of line
$$y = mx + c$$

$$\frac{x}{5} = 0$$

$$\frac{y-y}{5} = 0$$

$$\frac{y-y}{5} = 0$$

$$\frac{x+5}{5} = 0$$

$$\frac{x+5}$$

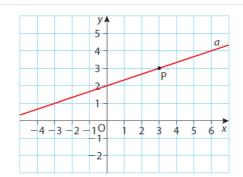
$$y - 4 = 5(x - 2)$$

$$y - 4 = 5x - 10$$

$$-y \left(-y - 5x - 9 - 10\right)$$

$$-4 \left(-5x - 9 - 6\right)$$

y-y=m(x-x)


WH **10.** The line y = 2x + 5 intersects the y-axis at the point P.

- (i) Write down the slope of the line and the coordinates of P.
- (ii) Find the equation of the line through P and which is perpendicular to y = 2x + 5.

- (i) Write down the slope of the line and the coordinates of P.
- (ii) Find the equation of the line through P and which is perpendicular to y = 2x + 5.

11. Use the grid in the given diagram to write down the slope of the line a. Now write down the equation of a in the form y = mx + c.

> Write down the coordinates of the point P and hence find the equation of the line through P which is perpendicular to a.

- **12.** The equation of the line AB is 5x 3y = 26.
 - (i) Find the slope of AB.
 - (ii) The point A has coordinates (4, -2) and a point C has coordinates (-6, 4).
 - (a) Prove that AC is perpendicular to AB.
 - (b) Find the equation of the line AC, expressing your answer in the form ax + by = c.

Answers

Exercise 11.5

1.
$$-2$$
; $2x + y - 8 = 0$

2.
$$3x - y - 9 = 0$$

3.
$$\frac{2}{3}$$
; $-\frac{3}{2}$; $3x + 2y - 10 = 0$

4.
$$2x - 3y + 7 = 0$$

5.
$$3x - y + 12 = 0$$

6. (i) Slope *a*: 2, Slope *b*:
$$-\frac{1}{2}$$

(iii)
$$2x - y - 8 = 0$$

7.
$$2x + y - 5 = 0$$

9.
$$(2, 4)$$
; $5x - y - 6 = 0$

10. (i) Slope: 2, P(0, 5) (ii)
$$x + 2y - 10 = 0$$

(ii)
$$x + 2y - 10 = 0$$

11.
$$\frac{1}{3}$$
; $y = \frac{1}{3}x + 2$; P(3, 3); $y = -3x + 12$

12. (i)
$$\frac{5}{3}$$

12. (i)
$$\frac{5}{3}$$
 (ii) (b) $3x + 5y = 2$