Graphing Lines

Eg1 Graph the line 2x+y=6

you need to find where the line cut the yaxis (x=0) and x axis (y=0)

$$2x=6$$

 $-2|x=3|-2$
Point (3,0)

Area of the Δ $\frac{1}{2}$ Base \times \perp height $\frac{1}{2}(3) \times 6 = 9$ unib²

Graphing lines parallel to the axis

Lines // to the yaxis x=a, $a \in Z$ Lines // to the xaxis y=a, $a \in Z$

C/W > H/W Pg 222 Pg 223 Q1+2

Section 11.6 Graphing lines

Example 1

If the point (k, 3) is on the line 4x - 3y + 1 = 0, find the value of k.

Exercise 11.6

1. Write down the equations of the lines *a*, *b*, *c* and d shown on the right.

2. Draw a pair of axes and sketch these four lines:

(i)
$$x = 4$$

(ii)
$$y = 2$$

(iii)
$$x = -2$$

(iii)
$$x = -2$$
 (iv) $y = -3$

- **3.** Use the graph of the line 2x + y = 6 to write down $y \neq 6$
 - (i) the value of x when y = 0
 - (ii) the coordinates of the point where the line crosses the *y*-axis
 - (iii) the value of y when x = 1
 - (iv) the value of x when y = 2
 - (v) the area of the triangle formed by the line, the *x*-axis and the *y*-axis.

- **4.** A straight line has equation x + y = 5.
 - (i) By substituting x = 0, find the coordinates of the point where the line crosses the y-axis.
 - (ii) By substituting y = 0, find the coordinates of the point where the line crosses the x-axis.
 - (iii) Draw a graph of the line x + y = 5.

- **5.** A straight line has equation 3x + y = 6.
 - (i) By substituting x = 0, find the coordinates of the point where the line crosses the y-axis.
 - (ii) By substituting y = 0, find the coordinates of the point where the line crosses the x-axis.
 - (iii) Draw a graph of the line 3x + y = 6.

6. Find the coordinates of the points at which the line x - 2y - 6 = 0 intersects the x-axis and y-axis.

Now use these points to draw a sketch of the line.

7. Find the coordinates of the points where the line x - 2y = 5 intersects the x-axis and y-axis. Hence draw a sketch of the line.

8. Draw these graphs on the same diagram.

(i)
$$x + y = 2$$

(ii)
$$x + y = 3$$

(iii)
$$x + y = 5$$

What do they all have in common?

9. Draw a sketch of the line 2x - y + 6 = 0.

Hence write down the area of the triangle formed by the x-axis, the y-axis and the line.

10. The equations of the lines a and b are:

a:
$$y = \frac{2}{3}x + 2$$

b:
$$3x + 5y - 15 = 0$$

- (i) Which line intersects the y-axis at (0, 2)?
- (ii) Which line intersects the x-axis at (5, 0)?
- (iii) Use the slopes of the two lines to investigate whether the lines are perpendicular to each other.
- (iv) Write down the area of the triangle formed by the line 3x + 5y 15 = 0, the x-axis and the y-axis.

(ii) What is the gradient of the line?

Gradient is another word for slope.

12. Each of the following lines contains the origin (0, 0). By taking a value for *x* and then finding the corresponding *y*-value, sketch each of the lines on separate diagrams:

- (i) x 2y = 0
- (ii) x + 3y = 0
- (iii) 3x y = 0
- (iv) x 4y = 0.

13. The lines *a*, *b*, *c* and *d* are graphed in the given diagram. Match each line with one of these equations:

(ii)
$$x - y = 0$$

(iii)
$$2x + 5y = 10$$

(iv)
$$y = 4$$

- **14.** (i) Verify that (2, -5) is on the line 2x + y + 1 = 0.
 - (ii) Verify that (2, -3) is on the line y = x 5.
 - (iii) Show that (-3, 1) is not on the line x 3y + 1 = 0.
 - (iv) Investigate if (2, 0) is on the line 2x y + 3 = 0.

15. Show that $(-3, 1)$ is on the line $2x + 4y + 2 = 0$.
16. If (1, 4) is on the line $2x + y + k = 0$, find the value of <i>k</i> .

17. If $(2, -3)$ is on the line $x + ky + 7 = 0$, find the value of k .

- **18.** (i) Find the value of k if the line 2x + ky 8 = 0 contains the point (3, 1). (ii) If (1, t) lies on the line y = 2x + 3, find the value of t.

Answers

Exercise 11.6

- **1.** a: y = 1, b: y = 3, c: x = 3, d: x = -1
- **3.** (i) 3 (ii) (0, 6) (iii) 4
- - (iv) 2
- (v) 9 sq. units
- **4.** (i) (0, 5)
- (ii) (5, 0) (ii) (2, 0)
- **5.** (i) (0, 6) **6.** (6, 0), (0, −3)
- 7. $(5, 0), (0, -2\frac{1}{2})$
- 8. Same slope, i.e. all parallel to each other
- 9. 9 sq. units

Answers

- **10.** (i) *a*
- (ii) *b*
- (iii) Not perpendicular (iv) $\frac{15}{2}$ sq. units
- **11.** (i) A(0, 2), B(-4, 0)
- (ii) $\frac{1}{2}$ (iii) a
- **13.** (i) *d*
- (ii) *c*
- (iv) *b*
- 14. (iv) Not on this line
- **16.** −6
- **17.** 3
- **18.** (i) 2
- (ii) 5