Function is an expression it contains letters and numbers seperated by the + and - operators

$$f(x) = ax + b$$
, a and $b \in Z$

you will be given a value of x

Sub the value in to the x part of the function to find the y value

fund f(3) when f(x)=3x+1 use brackets when you substitute f(3)=3(3)+1

Function words

x values Input values -> Domain

y value Output values -> Runge

(x,y) Point > Couple.

Eg1) f(x)=2x+3 is a function, graph the function in the domain $1 \le x \le 5$.

Table	f(x) 2×+3		{1, 2, 3, 4, 5}
Domain X	Range	(ouple (x, y)	12 + (4,11)
	2(1)+3=5	(1,5)	(3,4)
2	2(2)+3=7	(2,7)	6 (2,3)
3	2(3)+3=9	(3, 9)	4 (15)
4	2(4)+3=11	(4, 11)	2 †
5	2(5)+3= 13	(5,13)	2 3 4 5

Domain	Range	(ouple (x,y)	14 12 -				(4,11	/(5 ₍₁₃)	
1	2(1)+3=5	(1, 5)	10 + 8 +			(3,0)			
2	2(2)+3=7	(2,7)	6 +		(2,7)				
3	2(3)+3= 9 2(4)+3= 11	(3. 9) (4. 11)	4 +	(1x)					
4	2(5)+3= 13	1 2	$\dot{+}$	+	+	1	1	 	, ×
5	Z () / () = · /	1			-	•	•	•	

Note: When a value is in the bracket

Replace the x value in the function.

Eg)
$$f(x) = 2x-3$$
 Rand

H(u)

A/u)

1) $f(1)$

2) $f(0)$

3) $f(-1)$

4) $f(-3)$

2(1) -3

2(0) -3

2(-1) -3

2(-3) -3

-2 -3

-6 -3

 $f(1) = -1$
 $f(0) = -3$
 $f(0) = -3$

When the function is equal to a value ie f(x) = 2, you will be asked to find x Therefore

Recall: f(x) = y .: the value of y is 2

Method:

- 1) Put the given function equal to the given value
- 2) Use stabilizers and solve for X.

Eg 1) Solve the equation when
$$g(x) = x+2$$
 and $g(x) = 3$

we need to find
$$x$$

$$g(x) = 3$$

$$x+2 = 3$$

$$x=1$$

Remember there is only two ways these function questions can be asked

- 1) The value of x is in the bracket replace the x value in the function with the given value of x and find y.
- 2) The function is equal to a value you need to put the function equal to the given value and solve to find X.

Functions

Section 19.3 Notation for functions

Luneair Equation:
$$ax+by=c$$
 or $ax+by+c=0$ or $y=mx+c$
 $f(x) = y$

Domain $\rightarrow x$ values inpuls $f(x,y) = couple$

Range $\rightarrow y$ values outputs $f(x,y) = couple$

HIW $f(x) = y$

Example 1

The functions f and g are defined on R such that

$$f: x \rightarrow x + 5$$
 and $g: x \rightarrow x^2 - 1$.

Find (i)
$$f(3)$$
 (ii) $g(-3)$ (iii) $f(2k)$ (iv) $f(k+1)$ (v) $g(3k)$ (vi) $g(k+1)$

Example 2

A function is defined by $f: x \rightarrow 4x - 5$.

- (i) Find *f*(3)
- (ii) Find the value of k for which kf(3) = f(10).

- **1.** If f(x) = 2x 3, find
 - (i) f(1)
 - (ii) *f*(0)
 - (iii) *f*(2)
 - (iv) f(-1)
 - (v) f(-3).
- **2.** If f(x) = 4x 5, find

(i)
$$f(2)$$
 $Y(2)-5 => 8-5 = 3 $f(2)=3$ (2.3)$

(ii)
$$f(0)$$
 4(0) -5 => 0-5= -5

(iii)
$$f(-3)$$
 4(-3)-5=> -12-5= -17

(iv)
$$f(\frac{1}{2})$$
 $4(\frac{1}{2})$ -5 = 2-5 = -3

(v)
$$f(\frac{1}{4})$$
. $4(\frac{1}{4}) - 5 = 1 - 5 = -4$

3. If $f(x) = x^2 - 3$, find

(i)
$$f(0)$$
 (o) $(-3) = -3$

(ii)
$$f(1)$$
 (1) $^2-3=-2$

(iii)
$$f(2)$$
 (2) $(2)^2 - 3 = 1$

(iv)
$$f(-2)$$
 (-2) $(-2)^2-3$ -2 x-2 = +4-3=1

(v)
$$f(-4)$$
. $(-4)^{7}-3 = 16 \cdot 3 = 13$

4. If
$$f(x) = 5 - 2x$$
, find

(i)
$$f(\underline{0}) \Rightarrow 5 - 2(0) = 5$$

(ii)
$$f(2) = 5-2(2) = 5-4=1$$

(iii)
$$f(-3)$$
 5-2(-3) => 5+6=11

(iv)
$$f(-\frac{1}{2})$$
 $5-2(-\frac{1}{3}) = 5+1=6$

(v)
$$f(k)$$
. 5-2(k) = 5-2k

5. If
$$f(x) = 5x - 2$$
, solve the following equations:

5. If
$$f(x) = 5x - 2$$
, solve the following equations:
(i) $f(x) = 8$
(ii) $f(x) = 3$
 $5x - 2 = 8$
 $5x - 2 = 8$
 $5x - 2 = 3$
 $5x - 2 = 3$
 $5x - 2 = 3$
 $5x - 2 = 3$

(iii)
$$f(k) = -12$$
.

$$5(u)-2 = -12$$

 $5k-2 = -12$
 $+k \mid 5k = -10 \mid +2$
 $+s \mid k = -2 \mid +s$

6. If
$$f(x) = 3x - 2$$
 and $g(x) = 2 - 4x$, solve these equations:

(ii)
$$g(x) = -10$$

(iii)
$$g(x) = f(4)$$
.

- **7.** Given f(x) = 5x 1, find
 - (i) f(-3)
 - (ii) $f\left(\frac{1}{5}\right)$
 - (iii) f(k)
 - (iv) f(2k)
 - (v) f(2k-1).

8. The function f is defined as $f: x \rightarrow \frac{2-3x}{k}$. Find the value of the number $\frac{1}{k}$ if $\frac{1}{k}$

$$k(2-3(3))=7(2-3(2))$$

$$k(2-9) = 7(2-6)$$

$$u(-7) = 7(-4)$$

- **9.** If f(x) = 2x 3 and g(x) = 3 5x, solve these equations:
 - (i) f(x) = 7
- (ii) g(x) = -7 (iii) f(x) = g(-3).

10. A function is defined by $f: x \rightarrow 5x - 7$.						
(i) Find <i>f</i> (4).	(ii) Find the value of k for which $f(-3) = kf(3)$.					

11. The function f is defined by $f: x \rightarrow 3x - 4$. For what value of k is f(k) + f(2k) = 0?

12. $f: x \to 4x$ and $g: x \to x + 1$ define two functions. If g(3) + k[f(3)] = 8, find the value of k.

13.
$$f: x = 2x^2 - 1$$
 and $g(x) = x + 2$ define two functions. Solve these equations:

(i)
$$f(x) = 3$$

(ii)
$$g(x) = f(3)$$

(iii)
$$f(x) = g(x)$$
.

14.
$$h: x \to 2x + a$$
 and $k: x \to b - 5x$ are two functions where a and b are real numbers. If $h(1) = -5$ and $k(-1) = 4$, find the value of a and the value of b .

- **15.** A function f(x) is defined by $f(x) = 1 + \frac{2}{x}$.
 - (i) Evaluate f(-4) and f(1/5).
 (ii) Find the value of x for which f(x) = 2.

 - (iii) Find the value of k if $kf(2) = f(\frac{1}{2})$.

- **16.** g(x) = 1 4x defines a function.
 - (i) Find g(k + 1).
 - (ii) Solve the equation g(k + 1) = g(-3).

- **17.** Given that $f(x) = 2^x$, find
 - (i) f(4)
 - (ii) f(-2)
 - (iii) the value of x for which $f(x) = \frac{\sqrt{2}}{2}$.

Answers

Exercise 19.3

- **1.** (i) -1 (ii) -3 (iii) 1 (iv) -5 (v) -9
- **2.** (i) 3 (ii) -5 (iii) -17 (iv) -3 (v) -4

- **2.** (i) 3 (ii) -5 (iii) -17 (iv) -3 (v) -4 **3.** (i) -3 (ii) -2 (iii) 1 (iv) 1 (v) 13 **4.** (i) 5 (ii) 1 (iii) 11
 (iv) 6 (v) 5-2k **5.** (i) x=2 (ii) x=1 (iii) k=-2 **6.** (i) x=2 (ii) x=3 (iii) x=-2 **7.** (i) -16 (ii) 0 (iii) 5k-1 (iv) 10k-1 (v) 10k-6 **8.** k=4
- **8.** k = 4
- **9.** (i) x = 5 (ii) x = 2 (iii) $x = \frac{21}{2}$ **10.** (i) 13 (ii) $k = \frac{-11}{4}$

- **11.** $k = \frac{8}{9}$ **12.** $k = \frac{1}{3}$
- 13. (i) $x = \pm \sqrt{2}$ (ii) x = 15 (iii) x = 1514. a = -7, b = -115. (i) $\frac{1}{2}$, 11 (ii) 2 (iii) $\frac{5}{2}$ 16. (i) -4k 3 (ii) k = -4

- **17.** (i) 16 (ii) $\frac{1}{4}$
- (iii) $-\frac{1}{2}$