391
Section 19.4 Finding coefficients of functions

## Example 1

The given diagram shows part of the graph of the function $y=a x+b$.
Find the values of $a$ and $b$.


Example 2
The graph of the quadratic function $f(x)=x^{2}+b x+c$ is shown.
Find the values of $b$ and $c$.
Hence write down the coordinates of $p$ and $q$.


Exercise 19.4

$$
\begin{gathered}
y \\
f(x)=y
\end{gathered}
$$

1. $f(x)=3 x+k$ is a function.

If $f(4)=10$, find the value of $k$.
$\left.\begin{array}{l}x=4 \\ y=10\end{array}\right\}$ sub in to gwen function

$$
\begin{array}{rlrl}
f(x) & =3(4)+k & \frac{\text { verify }}{10} & \\
10 & =1 x+k & 3(4)-2^{x} & =10 \\
-12 \mid-2 & =k & 12-2=10 \\
10 & & 10
\end{array}
$$

2. If $(1,5)$ is a couple of the function $f(x)=k x+4$, find the value of $k$.
3. $f(x)=a x-6$ is a function.

If $f(2)=-2$, find the value of $a$.
4. $f: x \rightarrow x^{2}-2 x+k$ is a function.

If $(1,2)$ is a couple of the function, find the value of $k$.
5. $(-3,2)$ is a point on the line $y=a x+11$. Find the value of $a$.
6. $f(x)=k x^{2}+3$ is a function.

If $(-1,-1)$ is a couple of this function, find the value of $k$.
7. The graph of the linear function $f(x)$

$$
f(x)=a x+b \text { is shown. }
$$

Find the values of $a$ and $b$.
(1)

$$
\begin{aligned}
& \left(\begin{array}{ll}
x & y \\
0 & 4
\end{array}\right) \quad x=0 \\
& y \\
& 4=a(0)+b \\
& 4=b
\end{aligned}
$$

(2) $\binom{x}{3,-2} \quad \begin{aligned} & x=3 \\ & y \\ & y\end{aligned}$

$$
\begin{aligned}
-2 & =a\binom{x}{3}+\stackrel{b}{4} \\
-2 & =3 a+44 \\
-4 & -6 \\
-3 & =3 a \quad \mid \div-4 \\
-2 & =a
\end{aligned}
$$



Note: Point $(x, y)$
sub the value for $x$ into the function (xpart) Put the function equal to the $y$ vale

$$
\begin{aligned}
& f(x)=a x+b \\
& a=-2 \quad b=4 \\
& f(x)=-2 x+4
\end{aligned}
$$

8. A function $f$ is defined as $f: x \rightarrow 2 x-1$.

If the mapping diagram on the right represents $f$, find the values of $a, b$ and $c$.

9. $g: x \rightarrow a x^{2}+b x+1$ defines a function

If $\underset{g(1)=0}{x}$ and $\underset{g(2)}{(2)}=3$, write down two equations in $a$ and $b$.
Solve these equations to find the values of $a$ and $b$.
(1) $x=1 \quad y=0$
(2) $x=2 \quad y=3$
$0=a(1)^{2}+b(1)+1$
$3=a(2)^{2}+b(2)+1$
$3=4 a+2 b+1$ $4 a+2 b+1=3$
$0=a+b+1$
$a+b+1=0$
$=r|4 a+2 b=2|^{-1}$

## Simultaneous Equation

$$
\begin{aligned}
& a+b=-1 \quad(-4) \\
& 4 a+2 b=2 \\
& a+b=-1, b=-3 \\
& \Rightarrow \begin{array}{l}
-4 \not-4 b=4 \\
4 a+2 b=2 \\
--2 b=6 \quad \div-2
\end{array} \\
& a+(-3)=-1 \\
& \text { checta } a+b=-1 \\
& 2-3=-1 \\
& -1=-1
\end{aligned}
$$

(3) $\left.\right|_{a=2} ^{a-1 s=-1} \mid+3$
10. A function is defined by $f: x \rightarrow a x^{2}+b x+1$.

If $f(1)=0$ and ${ }^{2}(-1)=0$, find the value of $a$ and the value of $b$.
(1) $x=1 \quad y=0$
$a(1)^{2}+b(1)+1=0$
(2) $x=-1, \quad y=0$
$a(-1)^{2}+b(-1)+1=0$
$1|a+b=-1|^{-1}$

$$
-x\left|\begin{array}{l}
a-b+x=0 \\
a-b=-1
\end{array}\right|-1
$$

$a+b-1$
$a-b=-1$
$2 a=-2$
$-a\left|\begin{array}{l}a \\ a=-1\end{array}\right| \div a$

$$
\begin{aligned}
& a=-1 \Rightarrow a+b=-1 \\
&(-1)+b=-1 \\
& 1+b=-1 \\
& b=0
\end{aligned}
$$

| $A=-1$
11. $f: x \rightarrow x^{2}+p x+q$ defines a function.

Given that $f(3)=4$ and $f(-1)=4$, find the values of $p$ and $q$.
Using these values for $p$ and $q$, solve the equation $x^{2}+p x+q=0$.
12. The function $f(x)=x^{2}+b x+c$ is graphed on the right.
(i) Use $f(0)$ to find the value of $c$.
(ii) Use the graph to find another equation in $b$ and $c$. Use this equation and the value for $c$ found in (i) to find the value of $b$.
(iii) Using these values for $b$ and $c$, solve the equation


$$
\begin{array}{ll}
\begin{array}{ll}
x^{2}+b x+c=0 \\
\text { i) to find the coordinates of the point } d \\
-3=(0)^{x}+b(0)+c & \text { ii) } \\
-3=c & (-3,0) c=-3 \\
y \\
0 & =(-3)^{2}+b(-3)-3
\end{array} \\
& \begin{array}{l}
0=9-3 b-3 \\
x^{2}+2 x-3=0
\end{array} \\
& 0=6-3 b
\end{array}
$$


13. Functions $f$ and $g$ are defined as follows:
$f: x \rightarrow x^{2}+1$ and $g: x \rightarrow a x+b$, where $a$ and $b$ are constants.
If $f(0)=g(0)$ and $g(2)=15$, find the values of $a$ and $b$.
14. The diagram shows part of the graph of the function

$$
f: x \rightarrow x^{2}+b x+c .
$$

The named couples are elements of the function.
(i) Find the values of $b$ and $c$.
(ii) If $(2, y)$ is a point on the graph, find the value of $y$.

15. The curve on the right is the graph of the function $y=x^{2}+2 x-3$.
Find the coordinates of the points $a, b$ and $c$.

16. $f(x)=2 x^{2}$ and $g(x)=3 x-1$ are two functions.

Find (i) $f(3)$ (ii) $g(1)$ (iii) $g\left(\frac{1}{3}\right)$.
If $f(3)=k g(1)$, find $k$.
17. Given that $f(x)=3^{x}$, find
(i) $f(4)$
(ii) $f(-2)$
(iii) $f\left(\frac{1}{2}\right)$
(iv) the value of $x$ for which $f(x)=\frac{\sqrt{3}}{3}$.

## Answers

## Exercise 19.4

1. -2
2. 1
3. 2
4. 3
5. 3
6. -4
7. $a=-2, b=4$
8. $a=7, b=5, c=-7$
9. $a+b=-1,2 a+b=1 ; a=2, b=-3$
10. $a=-1, b=0$
11. $p=-2, q=1 ; x=1$
12. (i) $c=-3 \quad$ (ii) $b=2 \quad$ (iii) $(1,0)$
13. $a=7, b=1$
14. (i) $b=-2, c=-2 \quad$ (ii) $y=-2$
15. $a(1,0), b(-3,0), c(0,-3)$
16. (i) 18
(ii) 2
(iii) $0 ; k=9$
17. (i) 81
(ii) $\frac{1}{9}$
(iii) $\sqrt{3}$
(iv) $-\frac{1}{2}$

Part of the graph of the function $y=x^{2}+a x+b$ where $a, b \in \mathbb{Z}$ is shown below.


The points $R(2,3)$ and $S(-5,-4)$ are on the curve.
(i) Use the given points to form two equations in $a$ and $b$.

$$
\begin{gathered}
2(4)+(-a)=-1 \\
8-9=-1 \\
-1=-1
\end{gathered}
$$

