Method

- 1) Make TWO equations in terms of a and d.
- 2) use simultaneous equations to find a value of a and d.
- Eg 1 T4= 11 and Ta=21 in an arithmetic sequence. Find the values of a and d.

In=a+(n-1)d

In=a+(n-1)d

In=a+(n-1)d

In=21

$$a+(9-1)d=21$$
 $a+(3)d=11$
 $a+(3)d=11$
 $a+(3)d=21$
 $a+(3)d=21$
 $a+(3)d=21$
 $a+(3)d=21$
 $a+(3)d=21$
 $a+(3)d=21$

$$d=2 \implies 0$$

$$a+3d=11$$

$$a+3(2)=11$$

$$a+6=11$$

$$-6 = 6$$

Simultaneous Equations

Q2 Pg 289

$$14 = 14$$
 and $14 = 34$ Find a and d

 $16 = 14$ $16 = 16$

$$7^{n}_{4}=14$$
 $7^{n}_{4}=34$ $a+(4^{n}-1)d=14$ $a+(9-1)d=34$ (1) $a+3d=14$ (2) $a+8d=34$

Simultaneous Equations

(1)
$$a+3d=14 \times (-1)$$

(2) $a+8d=34$

$$d=4=)$$

(1) $a+3d=14$

$$a+3(4)=14$$

$$a+3(4)=14$$

$$a+12=14$$

$$T_{n=a+(n-1)d}$$
 $a=2$
 $d=4$
 $T_{n}=2+(n-1)4$
 $2+4n-4$
 $T_{n}=4n-2$

In=4n-2

$$a+3(4)-14$$
 $a+12=14$
 -12
 $a=2$
 $\begin{vmatrix} -12 \\ -12 \end{vmatrix}$

Hamewark Pg 289 Q3+4

Text 5 Tests Leaving 6 Certificate

Section 10.5 Finding the values of a and d —

Example 1

 T_4 of an arithmetic sequence is 11 and $T_9 = 21$. Find the values of a and d and hence find T_{50} .

288

Example 2

If x + 1, 2x - 2, and 2x + 1 are three consecutive terms of an arithmetic sequence, find the value of x.

Hence write down T_n and T_{100} of the sequence.

Exercise 10.5

1. The first term of an arithmetic sequence is 5. If the fifth term is 33, find d, the common difference. Hence find T_n and T_{20} .

2. In an arithmetic sequence, $T_4 = 14$ and $T_9 = 34$. Find the values of a and d and hence write down the value of T_{13} .

Exercise 10.5

3. In an arithmetic sequence, $T_5 = 21$ and $T_{10} = 41$. Find the values of a and d. Hence find T_n and T_{60} .

4. In an arithmetic sequence, the eighth term is -18 and the third term is 12. Find the values of a and d. Hence find T_{100} .

Exercise 10.5

5. In an arithmetic sequence, $T_3 = 4$ and $T_{10} = -17$. Find the values of a and d. Write down T_n of the sequence and find the value of n for which $T_n = -47$.

- **6.** In an arithmetic sequence, the first term is 3 and $T_6 = 2T_3$.
 - (i) Find the value of the common difference, *d*.
 - (ii) Find T_n , the nth term.

289

Exercise 10.5

- **7.** In an arithmetic sequence, $T_1 + T_5 = 0$ and $T_{13} = 20$.
 - (i) Find the value of *a* and the value of *d*.
 - (ii) Show that the seventh term is twice the fifth term.

289

- **8.** In an arithmetic sequence, $T_4 = -9$ and $T_{15} = -31$. Find the values of a and d.
 - Write down T_n of the sequence and hence find which term is equal to -81.

Exercise 10.5

9. Lamp-posts are put at the end of every 100 m stretch of a motorway, as shown,

- (i) How many lamp-posts are needed for 500 m of motorway?
- (ii) Write down, as a number sequence, the number of lamp-posts required for 100 m, $200\,m,300\,m,400\,m,\dots$
- (iii) Find an expression in n for the nth term of this sequence.
- (iv) Use the expression found in (iii) to write down the number of lamp-posts needed for 8 km of motorway.
- (v) The M51 is a motorway being built. The contractor has ordered 2402 lamp-posts. How long is this motorway?

10. In an arithmetic sequence, $T_1 + T_3 = 12$ and $T_4 + T_6 = 24$. Find the values of a and d.

Exercise 10.5

11. In an arithmetic sequence, the sixth term is 20 and the tenth term is four times the second term.

Find the values of a and d. Hence calculate T_{100} .

12. If x, 2x + 3 and 4x + 5 form three consecutive terms of an arithmetic sequence, find the value of x.

Exercise 10.5

- **13.** Find the value of *x* in each of the following arithmetic sequences:
 - (i) x-1, x+1, 3x-3
 - (ii) x + 4, 3 x, x + 10.

14. Tommy builds fences in different lengths using pieces of wood.

Fence length 1

Fence length 2

(i) Sketch fence length 5. Tommy counted how many pieces he needed to make each fence length. He then drew up the table below.

Fence length	1	2	3	4	5	6
Number of pieces	4	7	10			

- (ii) Complete the table to show how many pieces of wood he would use for fence lengths 4, 5 and 6.
- (iii) Write down, in terms of n, an expression for the number of pieces of wood needed for fence length n.
- (iv) How many pieces of wood are needed for fence length 40?
- (v) If 91 pieces of wood are needed, what is the number of the fence length?

Answers 10.5

- **1.** d = 7; $T_n = 7n 2$; $T_{20} = 138$
- **2.** a = 2, d = 4; $T_{13} = 50$
- **3.** a = 5, d = 4; $T_n = 4n + 1$; $T_{60} = 241$
- **4.** a = 24, d = -6; $T_{100} = -570$
- **5.** $a = 10, d = -3; T_n = -3n + 13; n = 20$
- **6.** (i) d = 3
- (ii) $T_n = 3n$
- **7.** (i) a = -4, d = 2 (ii) Both = 8
- **8.** a = -3, d = -2; $T_n = -2n 1$; $T_{40} = 81$
- **9.** (i) 12
- (ii) 4, 6, 8, 10, ...
- (iii) 2n + 2 (iv) 162
- (v) 120 km
- **10.** a = 4, d = 2
- **11.** a = 5, d = 3; $T_{100} = 302$
- **12.** x = 1
- **13.** (i) x = 3
- (ii) x = -2
- **14.** (i)

- (iii) 3n + 1
- (iv) 121
- (v) Fence length 30