

The functis is positive above the $x$ axis (f) The function is negative below the $x$ axis $\Theta$

The shape of the graph depends on the coefficient of $x^{3}$

(f) $a x^{3} \quad a>0$

The graph well. start increasing

$\Theta-a x^{3} \quad-a<0$

The graph will start decreasing


## 17 <br> Graphing Functions

Section 17.5 Cubic functions

## Example 1

Draw the graph of the function $f: x \rightarrow x^{3}-3 x^{2}-x+3$, in the domain $-2 \leqslant x \leqslant 4$.


## Exercise 17.5

1. Copy and complete the table given on the right.

Use this table to draw the graph of the
function $f(x)=x^{3}+3 x^{2}-x-3$
in the domain $-4 \leqslant x \leqslant 2, x \in R$.


| $\boldsymbol{x}$ | $x^{3}+3 x^{2}-x-3$ | $\boldsymbol{y}$ |
| ---: | :---: | :---: |
| -4 | $-64+36+4-3$ | -27 |
| -3 |  |  |
| -2 |  |  |
| -1 |  |  |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |

## Exercise 17.5

3. Graph the function $f(x)=x^{3}-5 x+2$ in the domain $-3 \leqslant x \leqslant 3, x \in R$.


## Exercise 17.5

2. Draw a graph of the function $y=x^{3}-2 x^{2}-4 x$ in the domain $-2 \leqslant x \leqslant 4, x \in R$.


## Exercise 17.5

Pg 491
4. The diagram below shows the graph of a function $y=f(x)$.


Use the graph to write down
(i) the roots of the equation $f(x)=0$ Culs $x$ axis $x=-3, x=0, x=3$
(ii) the domain of values of $x$ for which $f(x)$ is positive $-3 \leq x \leq 0$
(iii) the values of $x$ for which $f(x)$ is positive and decreasing $-15 \leqslant x \leqslant 0$
(iv) the coordinates of the maximum turning point $(-1.5,8) \mathrm{Max}$
(v) the coordinates of the minimum turning point. $(1.5,-8) \mathrm{M} \dot{\mathrm{cm}}$.

## Exercise 17.5

## HW Pg 492 Q5+6

5. The diagram on the right shows the graph of the function $f(x)=x^{3}+x^{2}-6 x$.

Use the graph to write down
(i) the roots of the equation $f(x)=0$
(ii) the coordinates of the minimum turning point
(iii) the values of $x$ for which $f(x)$ is positive
(iv) the values of $x$ for which $f(x)$ is negative and decreasing.


## Exercise 17.5

6. If $f(x)=x^{3}+2 x^{2}-7 x-3$, copy and complete the following table:

| $\boldsymbol{x}=$ | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{f}(\boldsymbol{x})=$ | -7 |  |  |  |  | -7 |  | 21 |

Draw the graph of the function

$$
f(x)=x^{3}+2 x^{2}-7 x-3 \text { in the domain }-4 \leqslant x \leqslant 3, x \in R
$$

Use your graph to estimate
(i) the roots of the equation $f(x)=0$
(ii) the domain of values of $x$ for which $f(x)$ is decreasing
(iii) the coordinates of the minimum turning point.


## Exercise 17.5

7. Copy and complete the table of values for $y=6 x+x^{2}-x^{3}$.

| $\boldsymbol{x}$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ |  | 0 | -4 |  |  | 8 | 0 |  |

(i) Draw a graph of the function $y=6 x+x^{2}-x^{3}$ in the domain $-3 \leqslant x \leqslant 4$.
(ii) How is this graph different from the graphs you have drawn so far?
(iii) Write down the roots of the equation $y=0$.
(iv) Use your graph to estimate the coordinates of the minimum turning point.
(v) For what values of $x$ is $y$ negative and decreasing?


## Exercise 17.5

8. Here are the graphs of three cubic functions, $f(x)=\ldots$.
(A)

(B)

(C)

(i) Which graph represents a function in which the coefficient of $x^{3}$ is negative?
(ii) Which graph has only one real root for the equation $f(x)=0$ ?
(iii) In which graph is $f(x)$ positive for $-2.5<x<0$ ?
(iv) Which graph is negative and decreasing for $x>2.4$ ?

## Exercise 17.5

9. If $f(x)=-2 x^{3}+3 x^{2}+5 x-6$, complete the following table:

| $x=$ | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)=$ |  | -6 |  |  |  | -18 |

Draw the graph of the function $f: x \rightarrow-2 x^{3}+3 x^{\prime}+5 x-6$ in the domain $-2 \approx x \leqslant 3$.
Use your graph to estimate
(i) the roots of the equation $f(x)=0$
(ii) the coordinates of the maximum turning point
(iii) the values of $x$ for which $f(x)>0$
(iv) the values of $x<0$ for which $f(x)$ is negative and decreasing.


## Exercise 17.5

10. Associate each sketch-graph below with one of the given equations:
$y=x^{3}-x^{2}$
$y=1-x^{2}$
$y=x-x^{2}$
$y=-\frac{3}{4} x+3$

$$
y=x^{2}+3 x \quad y=9 x-x^{3}
$$

(A)

B

C

D

E

F


## Answers 17.5

1. $(-4,-15),(-3,0),(-2,3),(-1,0),(0,-3)$, $(1,0),(2,15)$
2. (i) $-3,0,3$
(ii) $-3<x<0 ; x>3$
(iii) $-1.5<x<0$
(iv) $(-1.5,8)$
(v) $(1.5,-8)$
3. (i) $-3,0,2$
(ii) $(1.1,-4)$
(iii) $-3<x<0 ; x>2$ (iv) $0<x<1.1$
4. $(-4,-7),(-3,9),(-2,11),(-1,5),(0,-3)$,
$(1,-7),(2,-1),(3,21)$;
(i) $-3.7,-0.4,2.1$
(ii) $-2.3<x<1$
(iii) $(1,-7)$
5. $(-3,18),(0,0),(1,6),(4,-24)$
(ii) decreases first
(iii) $x=-2,0,3$
(iv) $(-1.1,-6.7)$
(v) $-2<x<-1.1 ; x>3$
6. (i) $B$
(ii) C
(iii) $A$
(iv) $B$
7. (i) $-1.5,1,2$
(ii) $(1.5,1.5)$
(iii) $-2<x<-1.5 ; 1<x<2$
(iv) $-1.5<x<-0.5$
8. $A: y=1-x^{2} ; B: y=x-x^{2} ; C: y=x^{3}-x^{2}$;
$D: y=9 x-x^{3} ; E: y=x^{2}+3 x$;
$F: y=-\frac{3}{4} x+3$
