In a series all the terms are added

log fables
$$5n = \frac{n}{2} \left[2a + (n-1)d \right]$$
 $a = 1$ st ferm $d = common difference$.

n= no. of terms
$$S_5^* = \frac{5}{2} [2(1) + (5 - 1)^2]$$

 $S_5 = \frac{5}{2}$

PROJECT MATHS

Text & Tests

Section 10.6 Arithmetic series —

Example 1

Find S_n and hence S_{20} of the series $5 + 8 + 11 + 14 + \dots$

Example 2

Given the arithmetic series $5 + 7 + 9 + \dots$. If $S_n = 192$, find the value of n.

Example 3

In an arithmetic series, $S_n = n^2 + 2n$.

Find S_1 , S_2 and S_3 and hence write down T_1 , T_2 and T_3 .

Exercise 10.6

- **1.** For the arithmetic series 2 + 5 + 8 + ...,
 - (i) find the value of a and d
 - (ii) find the sum of the first 12 terms.

Exercise 10.6

2. Find the sum of the first 20 terms of the series

3. Find S_n and hence S_{16} of the arithmetic series

Exercise 10.6

4. The first four terms of a series are 7 + 10 + 13 + 16 + ...Find S_8 , the sum of the first eight terms.

Exercise 10.6

5. Write down the value of a and the value of d for the series $16 + 12 + 8 + 4 + \dots$ Hence find S_{24} of the series.

$$16 + 12 + 8 + 4 + \dots$$

$$S_{14} = \frac{1}{2} \left[20 + (n-1)d \right]$$

$$S_{24} = \frac{24}{2} \left[2(16) + (24-1)-4 \right]$$

6. In an arithmetic series the *n*th term, $T_n = 5n - 2$. Find the values of *a* and *d* and hence find S_{16} of the series.

$$\begin{array}{lll}
I_{1} = 5(1) - 2 & T_{1} = 3 \Rightarrow a & \text{fust term} \\
5 - 2 = 3 & T_{2} = 8 & 3.8 \\
I_{2} = 5(2) - 2 & T_{2} = 8 & 3.8 \\
I_{3} = 3 & 5 & 5 \\
I_{4} = 3 & 5 & 5
\end{array}$$

$$\begin{array}{lll}
a = 3 & 5 & 5 \\
a = 3 & 5 & 5
\end{array}$$

$$\begin{array}{lll}
a = 3 & 5 & 5 \\
Calc & Calc
\end{array}$$

Exercise 10.6

7. Show that S_n of the series 1 + 2 + 3 + ... is $\frac{n}{2}(n + 1)$.

Hence find the sum of the series 1 + 2 + 3 + ... 100. $S_n = \frac{n}{2} \left[2(1) + (n - 1) \right]$ $S_{100} = \frac{(100)}{2} \left[100 + \frac{1}{2} \right]$ $S_{100} = \frac{(100)}{2} \left[100 + \frac{1}{2} \right]$

$$\frac{n}{2}[n+1]$$
 Sio = 5050

Exercise 10.6

- 8. S_n of the series -4 2 + 0 + 2 + ... is 84.
 - (i) Write down the value of a and the value of d.
 - (ii) Find the value of n.

$$a=-4 Sn = \frac{n}{2}[2(-4) + (n-1)2]$$

$$d=2 \frac{n}{2}[-8 + 2n-2]$$

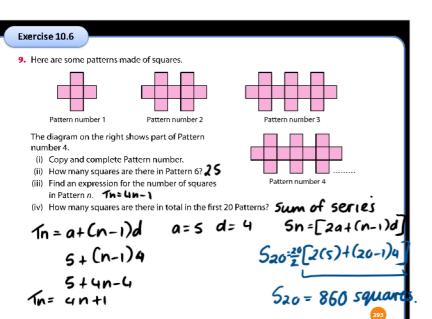
$$Sn = \frac{n}{2}[2n-10] = \frac{2n^2-10n}{2}$$

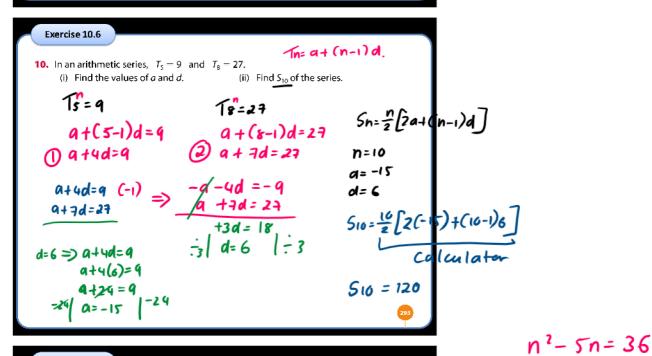
$$Sn = \frac{n^2-5n}{2}$$

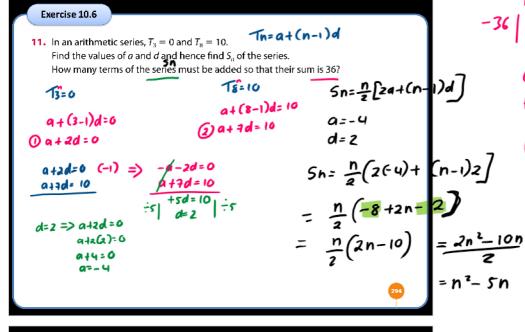
$$Sn^2-5n-84$$

$$n^2-5n-84$$

$$Factorize n^2-5n-84=0$$





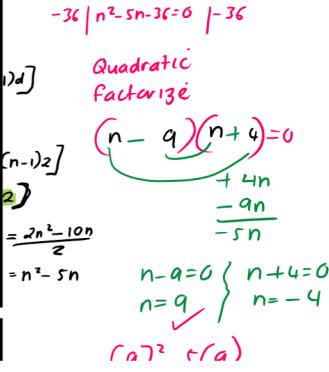


- nanani

Exercise 10.6

12. Find S of the series $5 \pm 8 \pm 11 \pm 14 \pm 14$

HIW



12. Find
$$S_n$$
 of the series $5+8+11+14+...$ $S_n: \frac{n}{2}$ (2a+(n-1)4) If $S_n = 98$, find the value of n .

$$d-3 \qquad S_{n} = \frac{n}{\pi} \left[2(s) + (n-1) \frac{3}{3} \right]$$

$$S_{n=\frac{n}{2}} \left[2(t) + (n-1)^{3} \right]$$

$$\Rightarrow \frac{n}{2} \left[10 + 3 n - \frac{1}{2} \right]$$

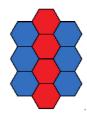
$$S_{n=\frac{3}{2}} \frac{1}{2} \left[10 + 3 n - \frac{1}{2} \right]$$

$$\Rightarrow \frac{n}{2} \left[3n+7 \right] \Rightarrow \frac{3n^2+7}{2} n \quad \frac{3n^2+7n=196}{3n^2+7n-196=0} \\ -b^{\frac{1}{2}} \int b^2-4ac$$

 $(9)^2 - 5(9)$ 81 - 45 = 36

Exercise 10.6

13. A student made tile designs using red and blue tiles, as shown.



- (i) Find an expression in n for the total number of
 - (a) red tiles used in the nth design
 - (b) blue tiles used in the nth design.
- (ii) Find, in terms of n, an expression for the total number of tiles used in the nth design.
- (iii) How many tiles in total are needed to complete 10 designs using the same pattern?

Exercise 10.6

14. Which term of the series $3 + 8 + 13 \dots$ is 98? Now find the sum of these terms.

15. S_n of an arithmetic series is given by $S_n = n^2 + 6n$. Find S_1 and S_2 and hence write down the values of T_1 and T_2 .

Exercise 10.6

- **16.** (i) Write down the 10th term of the sequence which begins 3, 7, 11, 15, ...
 - (ii) Write down an expression for the *n*th term of this sequence.
 - (iii) Show that 1997 cannot be a term in this sequence.
 - (iv) Calculate the number of terms in the sequence 3, 7, 11, 15, ..., 399.
 - (v) Hence find the sum of the series 3 + 7 + 11 + 15 + ... + 399.

Exercise 10.6

- **17.** The *n*th term of an arithmetic series is $T_n = 52 4n$.
 - (i) Find the values of a and d.
 - (ii) Find which term is zero.
 - (iii) Find the sum of the terms which are positive.

18. The sum of the first *n* terms of an arithmetic series is given by

$$S_n = 4n^2 - 8n.$$

- (i) Use S_1 and S_2 to find the first term and the common difference.
- (ii) How many terms of the series must be added to give a sum of 252?

Exercise 10.6

- **19.** In an arithmetic series, $T_5 = 21$ and $T_{10} = 11$.
 - (i) Find the first term and the common difference.
 - (ii) Find the sum of the first 20 terms.
 - (iii) For what value of n is $S_n = 0$?

Exercise 10.6

20. The first three patterns of a tiling sequence are shown below.

In each pattern, the tiles form a square of blue and green tiles.

(i) In the table below, write down the number of blue tiles needed for each of the first five patterns.

Pattern	1	2	3	4	5
Number of blue tiles	21	33			

- (ii) Find, in terms of n, an expression for the number of blue tiles needed for the nth
- (iii) Use the formula for T_{nr} found in (ii) above, to find the number of blue tiles in the 10th pattern.
- (iv) Find, in terms of n, a formula for the total number of blue tiles in the ${\it first}\ n\ {\it patterns}.$
- (v) How many patterns can be made with 399 blue tiles?

Answers 10.6

- **1.** (i) a = 2, d = 3 (ii) 222
- **2.** 820
- **3.** $S_n = \frac{n}{2} (3n 1); 376$
- **4.** 140
- **5.** a = 16, d = -4; -720
- **6.** a = 3, d = 5; $S_{16} = 648$
- **7.** 5050
- **8.** (i) a = -4, d = 2 (ii) n = 12
- 9. (i) (ii) 25
- (iii) $T_n = 4n + 1$
- **10.** (i) a = -15, d = 6 (ii) 120
- (iv) 860
- **17.** (i) a = 48, d = -4 (ii) T_{13} (iii) 312

16. (i) 39

(iv) 100

- (ii) 9

13. (i) (a) n + 1 (b) 2n

(ii) $T_n = 3n + 1$

14. T_{20} ; 1010 **15.** $S_1 = 7$, $S_2 = 16$; $T_1 = 7$, $T_2 = 9$

- **18.** (i) a = -4, d = 8 **19.** (i) a = 29, d = -2(ii) 200
 - (iii) n = 30
- **20.** (i) Pattern 1 2 3 4 5 **No. of blue tiles** 21 33 45 57 69

11. (i) a = -4, d = 2 (ii) $S_n = n(n - 5)$; 9 **12.** $S_n = \frac{n}{2}(3n + 7)$; n = 7

- (iii) 129

(iii) 175

(ii) $T_n = 4n - 1$

(v) 20 100

(ii) $T_n = 12n + 9$ (iii) 12 (iv) $S_n = \frac{n}{2}(30 + 12n)$ (v) 7