

PROJECT MATHS

Coordinate Geometry – The Line

Key words

Cartesian plane origin quadrant horizontal axis vertex parallel perpendicular positive negative linear equation collinear area translation intersection

Section 3.10 Area of a triangle ———

- 1) One point has to be an the origin
 2) Label the other two points (x1, y1) (x1, y2)
 3) Sub the values into the formula.

 Pg 16 Log Tables

Example 1

Find the area of the triangle with vertices (0, 0), (-2, 1) and (3, 4).

Area =
$$\frac{1}{2} |x_1 y_2 - x_2 y_1|$$
 Answer can't be negative (x_1, y_1) (x_2, y_2)

$$= \frac{1}{2} |(-2)(4) - (3)(1)|$$

$$= \frac{1}{2} |-8 - 3|$$

$$= \frac{1}{2} |-11|$$

$$= 5\frac{1}{2} \text{ square units}$$

71

Example 2

Find the area of the triangle with vertices (2, 4), (-3, 1) and (3, -5).

Let
$$(2,4) \rightarrow (0,0)$$

 $(-3,1) \rightarrow (-5,-3)$
 $(3,-5) \rightarrow (1,-9)$

$$(x_1, y_1)$$
 (x_2, y_2)
 \downarrow \downarrow
 $(-5, -3)$ $(1, -9)$

Here we take 2 from each x-value and 4 from each y-value.

Area of triangle =
$$\frac{1}{2} |x_1 y_2 - x_2 y_1|$$

= $\frac{1}{2} |(-5)(-9) - (1)(-3)|$
= $\frac{1}{2} |45 + 3|$
= $\frac{1}{2} |48|$
= 24 square units

Exercise 3.10

Area of Triangle with
$$(0,0) = \frac{1}{2} |x_1y_2 - x_2y_1|$$

1. Find the area of the triangle whose vertices are

(i) $(0,0)$, $(2,1)$, $(3,4)$, $(0,0)$, $(5,1)$, $(3,6)$, $(0,0)$

Exercise 3.10

Area of Triangle with
$$(0,0) = \frac{1}{2} |x_1y_2 - x_2y_1|$$

2. A(2, 3), B(-5, 1) and C(3, 1) are the vertices of a triangle.

By using the translation A(2, 3) \rightarrow (0, 0), find the images of B and C under this translation. Hence find the area of the triangle ABC.

A \Rightarrow (0, 0)

Franslahan

 $(2,3) \rightarrow (0,0)$

Franslahan

 $(3,1) \rightarrow (0,0)$

Area of \triangle ABC

Area of \triangle ABC

Area of \triangle ABC

Area \Rightarrow (1, -2)

Area \Rightarrow (2, 3)

Area \Rightarrow (3, 1)

Area \Rightarrow (3, 1)

Area \Rightarrow (3, 1)

Area \Rightarrow (3, 1)

Area \Rightarrow (1, -2)

Area \Rightarrow (2, 3)

Area \Rightarrow (3, 1)

Area \Rightarrow (4, 1)

Area \Rightarrow (5, 2)

Area \Rightarrow (6, 2)

Area \Rightarrow (7, 2)

Area \Rightarrow (8, 2)

Area \Rightarrow (9, 2)

Area \Rightarrow (1, 2)

Area \Rightarrow (1, 2)

Area \Rightarrow (2, 2)

Area \Rightarrow (3, 2)

Area \Rightarrow (

Classwork → HIW Pg 72 Q3.

Area of Triangle with $(0,0) = \frac{1}{2} |x_1y_2 - x_2y_1|$

- 3. By translating one of the vertices to (0, 0), find the area of each of the triangles whose vertices are
 - (i) (2, 3), (5, 1) and (2, 0)
 - (ii) (-2, 3), (4, 0) and (1, -4)
 - (iii) (-2, 1), (3, 6) and (0, -3) (iv) (5, 1), (2, -3) and (7, 1).

Exercise 3.10

Area of Triangle with $(0,0) = \frac{1}{2} |x_1y_2 - x_2y_1|$

4. The area of a triangle is half length of base multiplied by perpendicular height. Use this to write down the area of each of the triangles shown below.

Area of Triangle with $(0,0) = \frac{1}{2} |x_1y_2 - x_2y_1|$

5. A(0, 0), B(4, -1), C(2, 3) and D(-2, 4) are the vertices of a quadrilateral. Find the area of the quadrilateral by dividing it into the two triangles ABC and ACD.

73

Exercise 3.10

Area of Triangle with $(0,0) = \frac{1}{2} |x_1y_2 - x_2y_1|$

6. Find the area of the quadrilateral with vertices A(0, 0), B(2, -3), C(4, 0) and D(0, 4).

73

Area of Triangle with $(0,0) = \frac{1}{2} |x_1y_2 - x_2y_1|$

7. The line 2x - y - 4 = 0 intersects the *x*-axis at A and the *y*-axis at B. Find the area of the \triangle OAB, where O is the origin.

73

Exercise 3.10

Area of Triangle with $(0,0) = \frac{1}{2} |x_1y_2 - x_2y_1|$

8. Find the area of the triangle whose vertices are (0, 0), (1, 3) and (2, 6). What conclusion can you draw from your answer?

73

Area of Triangle with $(0,0) = \frac{1}{2} |x_1y_2 - x_2y_1|$

9. Find the value of *k* if the area of the given triangle is 7 square units.

7:

Exercise 3.10 Answers

- **1.** (i) $\frac{5}{2}$ sq. units
- (ii) $\frac{27}{2}$ sq. units
- (iii) $\frac{5}{2}$ sq. units
- (iv) 5 sq. units
- (v) 3 sq. units
- (vi) 9 sq. units
- **2.** B'(-7, -2); C'(1, -2); 8 sq. units
- **3.** (i) $\frac{9}{2}$ sq. units
- (ii) $\frac{33}{2}$ sq. units
- (iii) 15 sq. units
- (iv) 4 sq. units
- **4.** 14 sq. units; 14 sq. units
- **5.** 14 sq. units
- **6.** 14 sq. units
- **7.** 4 sq. units
- 8. Not a triangle, i.e. a straight line
- **9.** k = 1

Answers